Cargando…
TasselNetV2+: A Fast Implementation for High-Throughput Plant Counting From High-Resolution RGB Imagery
Plant counting runs through almost every stage of agricultural production from seed breeding, germination, cultivation, fertilization, pollination to yield estimation, and harvesting. With the prevalence of digital cameras, graphics processing units and deep learning-based computer vision technology...
Autores principales: | Lu, Hao, Cao, Zhiguo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750361/ https://www.ncbi.nlm.nih.gov/pubmed/33365037 http://dx.doi.org/10.3389/fpls.2020.541960 |
Ejemplares similares
-
TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks
por: Xiong, Haipeng, et al.
Publicado: (2019) -
TasselNet: counting maize tassels in the wild via local counts regression network
por: Lu, Hao, et al.
Publicado: (2017) -
TasselLFANet: a novel lightweight multi-branch feature aggregation neural network for high-throughput image-based maize tassels detection and counting
por: Yu, Zhenghong, et al.
Publicado: (2023) -
High Throughput Field Phenotyping for Plant Height Using UAV-Based RGB Imagery in Wheat Breeding Lines: Feasibility and Validation
por: Volpato, Leonardo, et al.
Publicado: (2021) -
Automatic counting of rapeseed inflorescences using deep learning method and UAV RGB imagery
por: Li, Jie, et al.
Publicado: (2023)