Cargando…
On the impact of smart sensor approximations on the accuracy of machine learning tasks
Smart sensors present in ubiquitous Internet of Things (IoT) devices often obtain high energy efficiency by carefully tuning how the sensing, the analog to digital (A/D) conversion and the digital serial transmission are implemented. Such tuning involves approximations, i.e. alterations of the sense...
Autores principales: | Jahier Pagliari, Daniele, Poncino, Massimo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750373/ https://www.ncbi.nlm.nih.gov/pubmed/33364509 http://dx.doi.org/10.1016/j.heliyon.2020.e05750 |
Ejemplares similares
-
Reducing the Energy Consumption of sEMG-Based Gesture Recognition at the Edge Using Transformers and Dynamic Inference
por: Xie, Chen, et al.
Publicado: (2023) -
Smart systems integration and simulation
por: Bombieri, Nicola, et al.
Publicado: (2016) -
Linear Interval Approximation for Smart Sensors and IoT Devices
por: Marinov, Marin B., et al.
Publicado: (2022) -
Quantum chemical accuracy from density functional approximations via machine learning
por: Bogojeski, Mihail, et al.
Publicado: (2020) -
The need to approximate the use-case in clinical machine learning
por: Saeb, Sohrab, et al.
Publicado: (2017)