Cargando…
Multiple kernel learning for integrative consensus clustering of omic datasets
MOTIVATION: Diverse applications—particularly in tumour subtyping—have demonstrated the importance of integrative clustering techniques for combining information from multiple data sources. Cluster Of Clusters Analysis (COCA) is one such approach that has been widely applied in the context of tumour...
Autores principales: | Cabassi, Alessandra, Kirk, Paul D W |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750932/ https://www.ncbi.nlm.nih.gov/pubmed/32592464 http://dx.doi.org/10.1093/bioinformatics/btaa593 |
Ejemplares similares
-
Bayesian correlated clustering to integrate multiple datasets
por: Kirk, Paul, et al.
Publicado: (2012) -
A multiple kernel density clustering algorithm for incomplete datasets in bioinformatics
por: Liao, Longlong, et al.
Publicado: (2018) -
Multi-omics data integration for hepatocellular carcinoma subtyping with multi-kernel learning
por: Wang, Jiaying, et al.
Publicado: (2022) -
Integrating omics datasets with the OmicsPLS package
por: Bouhaddani, Said el, et al.
Publicado: (2018) -
Consensus Kernel K-Means Clustering for Incomplete Multiview Data
por: Ye, Yongkai, et al.
Publicado: (2017)