Cargando…
Synthetic minority oversampling of vital statistics data with generative adversarial networks
OBJECTIVE: Minority oversampling is a standard approach used for adjusting the ratio between the classes on imbalanced data. However, established methods often provide modest improvements in classification performance when applied to data with extremely imbalanced class distribution and to mixed-typ...
Autores principales: | Koivu, Aki, Sairanen, Mikko, Airola, Antti, Pahikkala, Tapio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750982/ https://www.ncbi.nlm.nih.gov/pubmed/32885818 http://dx.doi.org/10.1093/jamia/ocaa127 |
Ejemplares similares
-
Predicting risk of stillbirth and preterm pregnancies with machine learning
por: Koivu, Aki, et al.
Publicado: (2020) -
Wrapper-based selection of genetic features in genome-wide association studies through fast matrix operations
por: Pahikkala, Tapio, et al.
Publicado: (2012) -
Prediction Model for Infectious Disease Health Literacy Based on Synthetic Minority Oversampling Technique Algorithm
por: Zhou, Rongsheng, et al.
Publicado: (2022) -
All-paths graph kernel for protein-protein interaction extraction with evaluation of cross-corpus learning
por: Airola, Antti, et al.
Publicado: (2008) -
Regularized Machine Learning in the Genetic Prediction of Complex Traits
por: Okser, Sebastian, et al.
Publicado: (2014)