Cargando…

Inference about causation from examination of familial confounding (ICE FALCON): a model for assessing causation analogous to Mendelian randomization

BACKGROUND: We developed a method to make Inference about Causation from Examination of FAmiliaL CONfounding (ICE FALCON) using observational data for related individuals and considering changes in a pair of regression coefficients. ICE FALCON has some similarities to Mendelian randomization (MR) bu...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shuai, Bui, Minh, Hopper, John L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7750993/
https://www.ncbi.nlm.nih.gov/pubmed/32500139
http://dx.doi.org/10.1093/ije/dyaa065
Descripción
Sumario:BACKGROUND: We developed a method to make Inference about Causation from Examination of FAmiliaL CONfounding (ICE FALCON) using observational data for related individuals and considering changes in a pair of regression coefficients. ICE FALCON has some similarities to Mendelian randomization (MR) but uses in effect all the familial determinants of the exposure, not just those captured by measured genetic variants, and does not require genetic data nor make strong assumptions. ICE FALCON can assess tracking of a measure over time, an issue often difficult to assess using MR due to lack of a valid instrumental variable. METHODS: We describe ICE FALCON and present two empirical applications with simulations. RESULTS: We found evidence consistent with body mass index (BMI) having a causal effect on DNA methylation at the ABCG1 locus, the same conclusion as from MR analyses but providing about 2.5 times more information per subject. We found evidence that tracking of BMI is consistent with longitudinal causation, as well as familial confounding. The simulations supported the validity of ICE FALCON. CONCLUSIONS: There are conceptual similarities between ICE FALCON and MR, but empirically they are giving similar conclusions with possibly more information per subject from ICE FALCON. ICE FALCON can be applied to circumstances in which MR cannot be applied, such as when there is no a priori genetic knowledge and/or data available to create a valid instrumental variable, or when the assumptions underlying MR analysis are suspect. ICE FALCON could provide insights into causality for a wide range of public health questions.