Cargando…
Static Disorder in Excitation Energies of the Fenna–Matthews–Olson Protein: Structure-Based Theory Meets Experiment
[Image: see text] Inhomogeneous broadening of optical lines of the Fenna–Matthews–Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energ...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751012/ https://www.ncbi.nlm.nih.gov/pubmed/33227205 http://dx.doi.org/10.1021/acs.jpclett.0c03123 |
_version_ | 1783625588176584704 |
---|---|
author | Chaillet, Marten L. Lengauer, Florian Adolphs, Julian Müh, Frank Fokas, Alexander S. Cole, Daniel J. Chin, Alex W. Renger, Thomas |
author_facet | Chaillet, Marten L. Lengauer, Florian Adolphs, Julian Müh, Frank Fokas, Alexander S. Cole, Daniel J. Chin, Alex W. Renger, Thomas |
author_sort | Chaillet, Marten L. |
collection | PubMed |
description | [Image: see text] Inhomogeneous broadening of optical lines of the Fenna–Matthews–Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics. |
format | Online Article Text |
id | pubmed-7751012 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77510122020-12-22 Static Disorder in Excitation Energies of the Fenna–Matthews–Olson Protein: Structure-Based Theory Meets Experiment Chaillet, Marten L. Lengauer, Florian Adolphs, Julian Müh, Frank Fokas, Alexander S. Cole, Daniel J. Chin, Alex W. Renger, Thomas J Phys Chem Lett [Image: see text] Inhomogeneous broadening of optical lines of the Fenna–Matthews–Olson (FMO) light-harvesting protein is investigated by combining a Monte Carlo sampling of low-energy conformational substates of the protein with a quantum chemical/electrostatic calculation of local transition energies (site energies) of the pigments. The good agreement between the optical spectra calculated for the inhomogeneous ensemble and the experimental data demonstrates that electrostatics is the dominant contributor to static disorder in site energies. Rotamers of polar amino acid side chains are found to cause bimodal distribution functions of site energy shifts, which can be probed by hole burning and single-molecule spectroscopy. When summing over the large number of contributions, the resulting distribution functions of the site energies become Gaussians, and the correlations in site energy fluctuations at different sites practically average to zero. These results demonstrate that static disorder in the FMO protein is in the realm of the central limit theorem of statistics. American Chemical Society 2020-11-23 2020-12-17 /pmc/articles/PMC7751012/ /pubmed/33227205 http://dx.doi.org/10.1021/acs.jpclett.0c03123 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Chaillet, Marten L. Lengauer, Florian Adolphs, Julian Müh, Frank Fokas, Alexander S. Cole, Daniel J. Chin, Alex W. Renger, Thomas Static Disorder in Excitation Energies of the Fenna–Matthews–Olson Protein: Structure-Based Theory Meets Experiment |
title | Static Disorder in Excitation Energies of the Fenna–Matthews–Olson
Protein: Structure-Based Theory Meets Experiment |
title_full | Static Disorder in Excitation Energies of the Fenna–Matthews–Olson
Protein: Structure-Based Theory Meets Experiment |
title_fullStr | Static Disorder in Excitation Energies of the Fenna–Matthews–Olson
Protein: Structure-Based Theory Meets Experiment |
title_full_unstemmed | Static Disorder in Excitation Energies of the Fenna–Matthews–Olson
Protein: Structure-Based Theory Meets Experiment |
title_short | Static Disorder in Excitation Energies of the Fenna–Matthews–Olson
Protein: Structure-Based Theory Meets Experiment |
title_sort | static disorder in excitation energies of the fenna–matthews–olson
protein: structure-based theory meets experiment |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751012/ https://www.ncbi.nlm.nih.gov/pubmed/33227205 http://dx.doi.org/10.1021/acs.jpclett.0c03123 |
work_keys_str_mv | AT chailletmartenl staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT lengauerflorian staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT adolphsjulian staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT muhfrank staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT fokasalexanders staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT coledanielj staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT chinalexw staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment AT rengerthomas staticdisorderinexcitationenergiesofthefennamatthewsolsonproteinstructurebasedtheorymeetsexperiment |