Cargando…

PuMA: A papillomavirus genome annotation tool

High-throughput sequencing technologies provide unprecedented power to identify novel viruses from a wide variety of (environmental) samples. The field of ‘viral metagenomics’ has dramatically expanded our understanding of viral diversity. Viral metagenomic approaches imply that many novel viruses w...

Descripción completa

Detalles Bibliográficos
Autores principales: Pace, Josh, Youens-Clark, Ken, Freeman, Cordell, Hurwitz, Bonnie, Van Doorslaer, Koenraad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751161/
https://www.ncbi.nlm.nih.gov/pubmed/33381306
http://dx.doi.org/10.1093/ve/veaa068
Descripción
Sumario:High-throughput sequencing technologies provide unprecedented power to identify novel viruses from a wide variety of (environmental) samples. The field of ‘viral metagenomics’ has dramatically expanded our understanding of viral diversity. Viral metagenomic approaches imply that many novel viruses will not be described by researchers who are experts on (the genomic organization of) that virus family. We have developed the papillomavirus annotation tool (PuMA) to provide researchers with a convenient and reproducible method to annotate and report novel papillomaviruses. PuMA currently correctly annotates 99% of the papillomavirus genes when benchmarked against the 655 reference genomes in the papillomavirus episteme. Compared to another viral annotation pipeline, PuMA annotates more viral features while being more accurate. To demonstrate its general applicability, we also developed a preliminary version of PuMA that can annotate polyomaviruses. PuMA is available on GitHub (https://github.com/KVD-lab/puma) and through the iMicrobe online environment (https://www.imicrobe.us/#/apps/puma).