Cargando…
Natural language processing systems for pathology parsing in limited data environments with uncertainty estimation
OBJECTIVE: Cancer is a leading cause of death, but much of the diagnostic information is stored as unstructured data in pathology reports. We aim to improve uncertainty estimates of machine learning-based pathology parsers and evaluate performance in low data settings. MATERIALS AND METHODS: Our dat...
Autores principales: | Odisho, Anobel Y, Park, Briton, Altieri, Nicholas, DeNero, John, Cooperberg, Matthew R, Carroll, Peter R, Yu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751177/ https://www.ncbi.nlm.nih.gov/pubmed/33381748 http://dx.doi.org/10.1093/jamiaopen/ooaa029 |
Ejemplares similares
-
Improving natural language information extraction from cancer pathology reports using transfer learning and zero-shot string similarity
por: Park, Briton, et al.
Publicado: (2021) -
Automatic natural language parsing
por: Wilks, Yorick A, et al.
Publicado: (1983) -
Design and development of Referrals Automation, a SMART on FHIR solution to improve patient access to specialty care
por: Odisho, Anobel Y, et al.
Publicado: (2020) -
Rapid design and implementation of an integrated patient self-triage and self-scheduling tool for COVID-19
por: Judson, Timothy J, et al.
Publicado: (2020) -
Parsing Neurodynamic Information Streams to Estimate the Frequency, Magnitude and Duration of Team Uncertainty
por: Stevens, Ronald H., et al.
Publicado: (2021)