Cargando…
Identification of LPCAT1 expression as a potential prognostic biomarker guiding treatment choice in acute myeloid leukemia
Changes in lipid metabolism affect numerous cellular processes that are relevant to cancer biology, including cell proliferation, death, differentiation and motility. In the phosphatidylcholine biosynthesis pathway, the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine is catalyzed...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751346/ https://www.ncbi.nlm.nih.gov/pubmed/33376538 http://dx.doi.org/10.3892/ol.2020.12366 |
Sumario: | Changes in lipid metabolism affect numerous cellular processes that are relevant to cancer biology, including cell proliferation, death, differentiation and motility. In the phosphatidylcholine biosynthesis pathway, the conversion of lysophosphatidylcholine (LPC) to phosphatidylcholine is catalyzed by cytosolic enzymes of the LPC acyltransferase (LPCAT) family. A number of studies have demonstrated that LPCAT1 overexpression is a frequent event in diverse human cancer types, and that it is associated with unfavorable pathological characteristics and patient survival. The aim of the present study was to explore the prognostic role of the expression of LPCAT family members in acute myeloid leukemia (AML). Using Cox regression analysis, only LPCAT1 expression was identified as an independent prognostic biomarker in AML. In a cohort from The Cancer Genome Atlas, Kaplan-Meier analysis revealed that patients with AML and higher expression levels of LPCAT1 had shorter overall survival (OS) and leukemia-free survival (LFS) times compared with those with lower expression levels of LPCAT1. This was further confirmed using an independent cohort from the Gene Expression Omnibus. Using a third cohort comprising patients with AML and healthy volunteers, it was confirmed that LPCAT1 expression was significantly increased in newly diagnosed AML cases compared with healthy controls. Moreover, higher expression of LPCAT1 was associated with French-American-British subtype-M4/M5 and nucleophosmin 1 mutations. Notably, patients who underwent hematopoietic stem cell transplantation (HSCT) following induction therapy exhibited significantly longer OS and LFS times compared with patients who only received chemotherapy after induction therapy in the higher LPCAT1 expression group, whereas no significant differences in OS and LFS times were observed between the HSCT and chemotherapy groups among total cases of AML in the lower LPCAT1 expression group. These results suggest that patients with AML who exhibit higher LPCAT1 expression levels may benefit from HSCT. Collectively, the findings of the present study indicate that LPCAT1 expression may serve as an independent prognostic biomarker that can guide the choice between HSCT and chemotherapy in patients with AML. |
---|