Cargando…
Effects of Metformin on the Gut Microbiota in Obesity and Type 2 Diabetes Mellitus
Metformin is a first-line treatment for type 2 diabetes mellitus (T2DM); however, its underlying mechanism is not fully understood. Gut microbiota affect the development and progression of T2DM. In recent years, an increasing number of studies has focused on the relationship between metformin and gu...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751595/ https://www.ncbi.nlm.nih.gov/pubmed/33364804 http://dx.doi.org/10.2147/DMSO.S286430 |
Sumario: | Metformin is a first-line treatment for type 2 diabetes mellitus (T2DM); however, its underlying mechanism is not fully understood. Gut microbiota affect the development and progression of T2DM. In recent years, an increasing number of studies has focused on the relationship between metformin and gut microbiota, suggesting that metformin might exert part of its hypoglycemic effect through these microbes. However, most of these results were not consistent due to the complex composition of the microbiota, the differences between species, the large variation between individuals, and the differences in experimental design, bringing great obstacle for our better understanding of the effects of metformin on the gut microbiota. Here, we reviewed the published papers concerning about the impacts of metformin on the gut microbiota of mice, rats, and humans with obesity or T2DM, and summarized the changes of gut microbiota composition caused by metformin and the possible underlying hypoglycemic mechanism which is related to gut microbiota. It was found that the proportions of some microbiota, such as phyla Bacteroidetes and Verrucomicrobia and genera Akkermansia, Bacteroides and Escherichia, were significantly affected by metformin in several studies. Metformin may exert part of hypoglycemic effects by altering the gut microbiota in ways that maintain the integrity of the intestinal barrier, promote the production of short-chain fatty acids (SCFAs), regulate bile acid metabolism, and improve glucose homeostasis. |
---|