Cargando…
Mathematical Modeling and Forecasting of COVID-19 in Moscow and Novosibirsk Region
We investigate inverse problems of finding unknown parameters of mathematical models SEIR-HCD and SEIR-D of COVID-19 spread with additional information about the number of detected cases, mortality, self-isolation coefficient, and tests performed for the city of Moscow and Novosibirsk region since 2...
Autores principales: | Krivorot’ko, O. I., Kabanikhin, S. I., Zyat’kov, N. Yu., Prikhod’ko, A. Yu., Prokhoshin, N. M., Shishlenin, M. A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pleiades Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751748/ http://dx.doi.org/10.1134/S1995423920040047 |
Ejemplares similares
-
Mathematical Modeling of the Wuhan COVID-2019 Epidemic and Inverse Problems
por: Kabanikhin, S. I., et al.
Publicado: (2020) -
Phi Factory Project In Novosibirsk
por: Barkov, L M, et al.
Publicado: (1990) -
Sensitivity and identifiability analysis
of COVID-19 pandemic models
por: Krivorotko, O.I., et al.
Publicado: (2021) -
Simulation of COVID-19 Spread Scenarios in the Republic of Kazakhstan Based on Regularization of the Agent-Based Model
por: Krivorotko, O. I., et al.
Publicado: (2023) -
Novosibirsk
Publicado: (1971)