Cargando…

Ranolazine-functionalized CuO NPs: efficient homogeneous and heterogeneous catalysts for reduction of 4-nitrophenol

In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infra...

Descripción completa

Detalles Bibliográficos
Autores principales: LAGHARI BALOCH, Gul Naz, MAHESAR, Sarfaraz Ahmed, ., Sirajuddin, NISAR, Jan, SHERAZI, Syed Tufail Hussain
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751816/
https://www.ncbi.nlm.nih.gov/pubmed/33493244
http://dx.doi.org/10.3906/kim-1909-22
Descripción
Sumario:In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The SEM pattern confirmed the morphology of ranolazine-functionalized CuO NPs with well-defined rice-like structures. FTIR spectroscopy confirmed the interaction between CuO NPs and ranolazine. The XRD analysis indicated that the structure of ranolazine-functionalized CuO NPs was monoclinic crystalline and the size ranged between 9 and 18 nm with an average particle size of 12 nm. The smaller size range of CuO NPs gave a large surface area that enhanced the efficiency of these catalysts employed for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the H (2) O system. In homogeneous catalysis, results showed that 50 μL of CuO NPs was required in the presence of NaBH4 for 99% reduction of 4-NP in 240 s. On the other hand, for heterogeneous catalysis, 0.5 mg of CuO NPs was used in the presence of NaBH4 for 99% catalytic reduction of 4-NP to 4-AP in 320 s. The rate of reaction for homogeneous catalysis and heterogeneous catalysis was determined from the plots of In(Ct /C0) of 4-NP versus time (s), which showed good linearity with values of 1.3 × 10 (-2) and 8.8 × 10 (-3) s (-1) . respectively. The high-quality catalytic efficiency, good reusability, nontoxic nature, and low cost are favorable properties of the synthesized CuO NPs for use as efficient catalysts for reduction of 4-AP to 4-NP in both homogeneous and heterogeneous media.