Cargando…

New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity

Coordination compounds containing dicyanoargentate(I) have remarkable biological potential due to their therapeutic antibacterial, antifungal, antibiofilm, and anticancer properties. In this study, a new dicyanoargentate(I)-based complex was synthesized and characterized by various procedures (eleme...

Descripción completa

Detalles Bibliográficos
Autor principal: KORKMAZ, Nesrin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Scientific and Technological Research Council of Turkey 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751906/
https://www.ncbi.nlm.nih.gov/pubmed/33488216
http://dx.doi.org/10.3906/kim-2004-42
_version_ 1783625749027094528
author KORKMAZ, Nesrin
author_facet KORKMAZ, Nesrin
author_sort KORKMAZ, Nesrin
collection PubMed
description Coordination compounds containing dicyanoargentate(I) have remarkable biological potential due to their therapeutic antibacterial, antifungal, antibiofilm, and anticancer properties. In this study, a new dicyanoargentate(I)-based complex was synthesized and characterized by various procedures (elemental, thermal, FT-IR for complex) involving crystal analysis of the complex. In addition, the biological activity of this new compound on the acetylcholinesterase (AChE) enzyme, an important enzyme for the nervous system, was investigated. When the infrared (IR) spectrum of the complex is examined, the OH vibration peak resulting from H(2)O molecules in the structure at 3948-3337 cm(−1) and at 2138 cm(−1), along with a CN peak coordinated to Ag, can be seen, indicating that the mass remaining in the thermal degradation of the complex at 1000 ◦ C is the weight corresponding to the metal mixture consisting of K+Ag (calc.: 68.06). The crystal method revealed that the complex has a sandwich-like, polymeric chemical structure with layers formed by K(+) cations and [Ag(CN)(2)H(2)O](−) anions. Therefore, the AChE enzyme has potential therapeutic uses in improving ACh levels in brain cells, in reducing various side effects, and in improving cognitive impairment, especially in advanced Alzheimer’s disease patients. In this study, the activity of this newly synthesized complex on AChE was also investigated. As a result of this research, [Ag(CN)(2)(H(2)O)K] had 0.0282 ± 0.010 μM Ki values against AChE. The compound was therefore a good inhibitor for the AChE enzyme. This type of compound can be used for the development of novel anticholinesterase drugs.
format Online
Article
Text
id pubmed-7751906
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Scientific and Technological Research Council of Turkey
record_format MEDLINE/PubMed
spelling pubmed-77519062021-01-22 New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity KORKMAZ, Nesrin Turk J Chem Article Coordination compounds containing dicyanoargentate(I) have remarkable biological potential due to their therapeutic antibacterial, antifungal, antibiofilm, and anticancer properties. In this study, a new dicyanoargentate(I)-based complex was synthesized and characterized by various procedures (elemental, thermal, FT-IR for complex) involving crystal analysis of the complex. In addition, the biological activity of this new compound on the acetylcholinesterase (AChE) enzyme, an important enzyme for the nervous system, was investigated. When the infrared (IR) spectrum of the complex is examined, the OH vibration peak resulting from H(2)O molecules in the structure at 3948-3337 cm(−1) and at 2138 cm(−1), along with a CN peak coordinated to Ag, can be seen, indicating that the mass remaining in the thermal degradation of the complex at 1000 ◦ C is the weight corresponding to the metal mixture consisting of K+Ag (calc.: 68.06). The crystal method revealed that the complex has a sandwich-like, polymeric chemical structure with layers formed by K(+) cations and [Ag(CN)(2)H(2)O](−) anions. Therefore, the AChE enzyme has potential therapeutic uses in improving ACh levels in brain cells, in reducing various side effects, and in improving cognitive impairment, especially in advanced Alzheimer’s disease patients. In this study, the activity of this newly synthesized complex on AChE was also investigated. As a result of this research, [Ag(CN)(2)(H(2)O)K] had 0.0282 ± 0.010 μM Ki values against AChE. The compound was therefore a good inhibitor for the AChE enzyme. This type of compound can be used for the development of novel anticholinesterase drugs. The Scientific and Technological Research Council of Turkey 2020-08-18 /pmc/articles/PMC7751906/ /pubmed/33488216 http://dx.doi.org/10.3906/kim-2004-42 Text en Copyright © 2020 The Author(s) This article is distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/ ), which permits unrestricted use and redistribution provided that the original author and source are credited.
spellingShingle Article
KORKMAZ, Nesrin
New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title_full New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title_fullStr New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title_full_unstemmed New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title_short New sandwich-type polymeric potassium-dicyanoargentate(I) complex: synthesis, characterization and enzymatic activity
title_sort new sandwich-type polymeric potassium-dicyanoargentate(i) complex: synthesis, characterization and enzymatic activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7751906/
https://www.ncbi.nlm.nih.gov/pubmed/33488216
http://dx.doi.org/10.3906/kim-2004-42
work_keys_str_mv AT korkmaznesrin newsandwichtypepolymericpotassiumdicyanoargentateicomplexsynthesischaracterizationandenzymaticactivity