Cargando…
Discriminative Label Relaxed Regression with Adaptive Graph Learning
The traditional label relaxation regression (LRR) algorithm directly fits the original data without considering the local structure information of the data. While the label relaxation regression algorithm of graph regularization takes into account the local geometric information, the performance of...
Autores principales: | Wang, Jingjing, Liu, Zhonghua, Lu, Wenpeng, Zhang, Kaibing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752280/ https://www.ncbi.nlm.nih.gov/pubmed/33414821 http://dx.doi.org/10.1155/2020/8852137 |
Ejemplares similares
-
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
A Spectral Graph Regression Model for Learning Brain Connectivity of Alzheimer’s Disease
por: Hu, Chenhui, et al.
Publicado: (2015) -
Multi-Graph Multi-Label Learning Based on Entropy
por: Zhu, Zixuan, et al.
Publicado: (2018) -
A Hierarchical Graph Learning Model for Brain Network Regression Analysis
por: Tang, Haoteng, et al.
Publicado: (2022) -
Iterative heterogeneous graph learning for knowledge graph-based recommendation
por: Liu, Tieyuan, et al.
Publicado: (2023)