Cargando…
Distributional Transformation Improves Decoding Accuracy When Predicting Chronological Age From Structural MRI
When predicting a certain subject-level variable (e.g., age in years) from measured biological data (e.g., structural MRI scans), the decoding algorithm does not always preserve the distribution of the variable to predict. In such a situation, distributional transformation (DT), i.e., mapping the pr...
Autor principal: | Soch, Joram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7752921/ https://www.ncbi.nlm.nih.gov/pubmed/33363488 http://dx.doi.org/10.3389/fpsyt.2020.604268 |
Ejemplares similares
-
Structural and Functional MRI Data Differentially Predict Chronological Age and Behavioral Memory Performance
por: Soch, Joram, et al.
Publicado: (2022) -
Editorial: Predicting Chronological Age From Structural Neuroimaging: The Predictive Analytics Competition 2019
por: Fisch, Lukas, et al.
Publicado: (2021) -
Awareness of age-related change, chronological age, subjective age and proactivity: An empirical study in China
por: Zhang, Wanli, et al.
Publicado: (2022) -
Decoding Human Personality Through Dermatoglyphics
por: Venurkar, Shreya, et al.
Publicado: (2022) -
Human emotion processing accuracy, negative biases, and fMRI activation are associated with childhood trauma
por: Reisch, Alexis A., et al.
Publicado: (2023)