Cargando…
DeepVesselNet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes
We present DeepVesselNet, an architecture tailored to the challenges faced when extracting vessel trees and networks and corresponding features in 3-D angiographic volumes using deep learning. We discuss the problems of low execution speed and high memory requirements associated with full 3-D networ...
Autores principales: | Tetteh, Giles, Efremov, Velizar, Forkert, Nils D., Schneider, Matthias, Kirschke, Jan, Weber, Bruno, Zimmer, Claus, Piraud, Marie, Menze, Björn H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7753013/ https://www.ncbi.nlm.nih.gov/pubmed/33363452 http://dx.doi.org/10.3389/fnins.2020.592352 |
Ejemplares similares
-
Virtual Contrast for Coronary Vessels Based on Level Set Generated Subvoxel Accurate Centerlines
por: Bitter, Ingmar, et al.
Publicado: (2006) -
An Effective Retinal Blood Vessel Segmentation by Using Automatic Random Walks Based on Centerline Extraction
por: Gao, Jianqing, et al.
Publicado: (2020) -
Clinical and Angiographic Predictors of Major Side Branch Occlusion after Main Vessel Stenting in Coronary Bifurcation Lesions
por: Zhang, Dong, et al.
Publicado: (2015) -
Novel Angiographic Scores for evaluation of Large Vessel Vasculitis
por: Tombetti, Enrico, et al.
Publicado: (2018) -
Spontaneous Dissection of the Coronary Vessels. Epidemiological and Coronary Angiographic Study
por: Vogiatzis, Ioannis, et al.
Publicado: (2019)