Cargando…
Optimisation of deep neural networks for identification of epileptic abnormalities from electroencephalogram signals
An electroencephalogram (EEG) measures and records the electrical activity of the brain. It provides valuable information that can be used to identify epileptic abnormalities. However, the visual identification of such abnormalities from EEG signals by expert neurologists is time consuming. Therefor...
Autor principal: | Kurdthongmee, Wattanapong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7753124/ https://www.ncbi.nlm.nih.gov/pubmed/33364484 http://dx.doi.org/10.1016/j.heliyon.2020.e05694 |
Ejemplares similares
-
Deep Convolutional Neural Network-Based Epileptic Electroencephalogram (EEG) Signal Classification
por: Gao, Yunyuan, et al.
Publicado: (2020) -
A comparative study of the effectiveness of using popular DNN object detection algorithms for pith detection in cross-sectional images of parawood
por: Kurdthongmee, Wattanapong
Publicado: (2020) -
Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals
por: Shah, Syed Yaseen, et al.
Publicado: (2022) -
Optimization of deep neural network-based human activity recognition for a wearable device
por: Suwannarat, K., et al.
Publicado: (2021) -
A Deep Convolutional Neural Network Method to Detect Seizures and Characteristic Frequencies Using Epileptic Electroencephalogram (EEG) Data
Publicado: (2021)