Cargando…
Survival prediction in patients with colon adenocarcinoma via multiomics data integration using a deep learning algorithm
The present study proposed a deep learning (DL) algorithm to predict survival in patients with colon adenocarcinoma (COAD) based on multiomics integration. The survival-sensitive model was constructed using an autoencoder for DL implementation based on The Cancer Genome Atlas (TCGA) data of patients...
Autores principales: | Lv, Jiudi, Wang, Junjie, Shang, Xiujuan, Liu, Fangfang, Guo, Shixun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7753845/ https://www.ncbi.nlm.nih.gov/pubmed/33258470 http://dx.doi.org/10.1042/BSR20201482 |
Ejemplares similares
-
Multiomics profiling of the expression and prognosis of MCMs in endometrial carcinoma
por: Lan, Hua, et al.
Publicado: (2021) -
piRNN: deep learning algorithm for piRNA prediction
por: Wang, Kai, et al.
Publicado: (2018) -
Mining novel cell glycolysis related gene markers that can predict the survival of colon adenocarcinoma patients
por: Chen, Sihan, et al.
Publicado: (2020) -
A multiomics comparison between endometrial cancer and serous ovarian cancer
por: Zhong, Hui, et al.
Publicado: (2020) -
Multiomics-based analyses of KPNA2 highlight its multiple potentials in hepatocellular carcinoma
por: Zhang, Jinzhong, et al.
Publicado: (2021)