Cargando…
Machine‐Learning prediction of comorbid substance use disorders in ADHD youth using Swedish registry data
BACKGROUND: Children with attention‐deficit/hyperactivity disorder (ADHD) have a high risk for substance use disorders (SUDs). Early identification of at‐risk youth would help allocate scarce resources for prevention programs. METHODS: Psychiatric and somatic diagnoses, family history of these disor...
Autores principales: | Zhang‐James, Yanli, Chen, Qi, Kuja‐Halkola, Ralf, Lichtenstein, Paul, Larsson, Henrik, Faraone, Stephen V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754321/ https://www.ncbi.nlm.nih.gov/pubmed/32237241 http://dx.doi.org/10.1111/jcpp.13226 |
Ejemplares similares
-
Familial liability to asthma and ADHD: A Swedish national register‐based study
por: Sun, Shihua, et al.
Publicado: (2021) -
Familial co-aggregation of attention-deficit/hyperactivity disorder and autoimmune diseases: a cohort study based on Swedish population-wide registers
por: Hegvik, Tor-Arne, et al.
Publicado: (2021) -
Predicting mental health problems in adolescence using machine learning techniques
por: Tate, Ashley E., et al.
Publicado: (2020) -
Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data
por: Chen, Qi, et al.
Publicado: (2020) -
Predictive validity of parent- and self-rated ADHD symptoms in adolescence on adverse socioeconomic and health outcomes
por: Du Rietz, Ebba, et al.
Publicado: (2017)