Cargando…
Hamiltonian cycles in planar cubic graphs with facial 2‐factors, and a new partial solution of Barnette's Conjecture
We study the existence of hamiltonian cycles in plane cubic graphs [Formula: see text] having a facial 2‐factor [Formula: see text]. Thus hamiltonicity in [Formula: see text] is transformed into the existence of a (quasi) spanning tree of faces in the contraction [Formula: see text]. In particular,...
Autores principales: | Bagheri Gh, Behrooz, Feder, Tomas, Fleischner, Herbert, Subi, Carlos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754535/ https://www.ncbi.nlm.nih.gov/pubmed/33380768 http://dx.doi.org/10.1002/jgt.22612 |
Ejemplares similares
-
The planar cubic Cayley graphs
por: Georgakopoulos, Agelos
Publicado: (2018) -
Eulerian Graphs and Related Topics
por: Fleischner, Herbert
Publicado: (1990) -
Comments on Arnold and Barnett's shielding-cut mechanism II
por: Fujisaki, H
Publicado: (1972) -
Meet the Master: Joseph Barnett Kirsner (1909–2012)
por: Rubin, David T., et al.
Publicado: (2017) -
Eulerian graphs and related topics
por: Fleischner, H
Publicado: (1991)