Cargando…
Accurate machine learning-based germination detection, prediction and quality assessment of three grain crops
BACKGROUND: Assessment of seed germination is an essential task for seed researchers to measure the quality and performance of seeds. Usually, seed assessments are done manually, which is a cumbersome, time consuming and error-prone process. Classical image analyses methods are not well suited for l...
Autores principales: | Genze, Nikita, Bharti, Richa, Grieb, Michael, Schultheiss, Sebastian J., Grimm, Dominik G. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754596/ https://www.ncbi.nlm.nih.gov/pubmed/33353559 http://dx.doi.org/10.1186/s13007-020-00699-x |
Ejemplares similares
-
DARLING: a device for assessing resistance to lodging in grain crops
por: Cook, Douglas D., et al.
Publicado: (2019) -
Improved weed segmentation in UAV imagery of sorghum fields with a combined deblurring segmentation model
por: Genze, Nikita, et al.
Publicado: (2023) -
Automated and accurate assessment for postural abnormalities in patients with Parkinson’s disease based on Kinect and machine learning
por: Zhang, Zhuoyu, et al.
Publicado: (2021) -
Accurate indel prediction using paired-end short reads
por: Grimm, Dominik, et al.
Publicado: (2013) -
A machine learning approach for accurate and real-time DNA sequence identification
por: Wang, Yiren, et al.
Publicado: (2021)