Cargando…
Multi‐modality machine learning approach for risk stratification in heart failure with left ventricular ejection fraction ≤ 45%
AIMS: Heart failure (HF) involves complex remodelling leading to electrical and mechanical dysfunction. We hypothesized that machine learning approaches incorporating data obtained from different investigative modalities including atrial and ventricular measurements from electrocardiography and echo...
Autores principales: | Tse, Gary, Zhou, Jiandong, Woo, Samuel Won Dong, Ko, Ching Ho, Lai, Rachel Wing Chuen, Liu, Tong, Liu, Yingzhi, Leung, Keith Sai Kit, Li, Andrew, Lee, Sharen, Li, Ka Hou Christien, Lakhani, Ishan, Zhang, Qingpeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754744/ https://www.ncbi.nlm.nih.gov/pubmed/33094925 http://dx.doi.org/10.1002/ehf2.12929 |
Ejemplares similares
-
P-Wave Area Predicts New Onset Atrial Fibrillation in Mitral Stenosis: A Machine Learning Approach
por: Tse, Gary, et al.
Publicado: (2020) -
Risk stratification of sudden cardiac death in asymptomatic female Brugada syndrome patients: A literature review
por: Leung, Keith Sai Kit, et al.
Publicado: (2023) -
Diagnostic and prognostic value of serum C-reactive protein in heart failure with preserved ejection fraction: a systematic review and meta-analysis
por: Lakhani, Ishan, et al.
Publicado: (2020) -
Novel Mechanisms in Heart Failure With Preserved, Midrange, and Reduced Ejection Fraction
por: Lakhani, Ishan, et al.
Publicado: (2019) -
Territory-wide cohort study of Brugada syndrome in Hong Kong: predictors of long-term outcomes using random survival forests and non-negative matrix factorisation
por: Lee, Sharen, et al.
Publicado: (2021)