Cargando…

Combining Initial Radiographs and Clinical Variables Improves Deep Learning Prognostication in Patients with COVID-19 from the Emergency Department

PURPOSE: To train a deep learning classification algorithm to predict chest radiograph severity scores and clinical outcomes in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: In this retrospective cohort study, patients aged 21–50 years who presented to the emergency depar...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Young Joon (Fred), Toussie, Danielle, Finkelstein, Mark, Cedillo, Mario A., Maron, Samuel Z., Manna, Sayan, Voutsinas, Nicholas, Eber, Corey, Jacobi, Adam, Bernheim, Adam, Gupta, Yogesh Sean, Chung, Michael S., Fayad, Zahi A., Glicksberg, Benjamin S., Oermann, Eric K., Costa, Anthony B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Radiological Society of North America 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754832/
https://www.ncbi.nlm.nih.gov/pubmed/33928257
http://dx.doi.org/10.1148/ryai.2020200098
Descripción
Sumario:PURPOSE: To train a deep learning classification algorithm to predict chest radiograph severity scores and clinical outcomes in patients with coronavirus disease 2019 (COVID-19). MATERIALS AND METHODS: In this retrospective cohort study, patients aged 21–50 years who presented to the emergency department (ED) of a multicenter urban health system from March 10 to 26, 2020, with COVID-19 confirmation at real-time reverse-transcription polymerase chain reaction screening were identified. The initial chest radiographs, clinical variables, and outcomes, including admission, intubation, and survival, were collected within 30 days (n = 338; median age, 39 years; 210 men). Two fellowship-trained cardiothoracic radiologists examined chest radiographs for opacities and assigned a clinically validated severity score. A deep learning algorithm was trained to predict outcomes on a holdout test set composed of patients with confirmed COVID-19 who presented between March 27 and 29, 2020 (n = 161; median age, 60 years; 98 men) for both younger (age range, 21–50 years; n = 51) and older (age >50 years, n = 110) populations. Bootstrapping was used to compute CIs. RESULTS: The model trained on the chest radiograph severity score produced the following areas under the receiver operating characteristic curves (AUCs): 0.80 (95% CI: 0.73, 0.88) for the chest radiograph severity score, 0.76 (95% CI: 0.68, 0.84) for admission, 0.66 (95% CI: 0.56, 0.75) for intubation, and 0.59 (95% CI: 0.49, 0.69) for death. The model trained on clinical variables produced an AUC of 0.64 (95% CI: 0.55, 0.73) for intubation and an AUC of 0.59 (95% CI: 0.50, 0.68) for death. Combining chest radiography and clinical variables increased the AUC of intubation and death to 0.88 (95% CI: 0.79, 0.96) and 0.82 (95% CI: 0.72, 0.91), respectively. CONCLUSION: The combination of imaging and clinical information improves outcome predictions. Supplemental material is available for this article. © RSNA, 2020