Cargando…

Comparison of effects of high and low dose paracetamol treatment and toxicity on brain and liver in rats

OBJECTIVE: Paracetamol is thought that it acts by inhibiting the central cyclooxygenase (COX) enzyme; its mechanism of action is still not fully explained. Although its most important side effect is hepatoxicity, it is thought to cause toxicity on the brain in recent years. The present study aims to...

Descripción completa

Detalles Bibliográficos
Autores principales: Oksuz, Ersoy, Yasar, Semih, Erten, Remzi, Arihan, Okan, Oto, Gokhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Kare Publishing 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7754870/
https://www.ncbi.nlm.nih.gov/pubmed/33381692
http://dx.doi.org/10.14744/nci.2020.54926
Descripción
Sumario:OBJECTIVE: Paracetamol is thought that it acts by inhibiting the central cyclooxygenase (COX) enzyme; its mechanism of action is still not fully explained. Although its most important side effect is hepatoxicity, it is thought to cause toxicity on the brain in recent years. The present study aims to investigate the treatment and toxic effects of low and high doses of paracetamol on the liver and brain. METHODS: Wistar-albino rats were used in this study. At doses of 20–500 mg/kg, paracetamol was administered intraperitoneally once a day for one and three days. The brain and liver were used for immunohistochemical evaluation using COX-3, prostaglandin E(2) (PGE(2)) and caspase 3 antibodies and for total antioxidant (TAS), total oxidant (TOS) and oxidative stress index (OSI) measurements. Results were evaluated using the Kruskal Wallis test (SPSS ver.24). RESULTS: The liver COX-3 levels were significantly lower in both groups with higher doses (p<0.05). In the brain, there was no statistically significant difference in COX-3 levels between the groups. There was no statistically significant difference in PGE(2) levels in the liver and brain between the groups (p>0.05). The caspase 3 level in the liver was statistically significantly higher in the low dose group compared to the other groups (p<0.05). In both liver and brain, OSI values were significantly higher in the 3-day high-dose group compared to others (p<0.05). There was no statistically significant difference between the groups in ALT and AST values (p>0.05). CONCLUSION: The results of our study show that paracetamol inhibits the COX-3 enzyme in the liver but has no effect in the brain, and COX-3 does not have an effect on PGE(2). Paracetamol causes apoptosis in the liver only in low doses; higher doses may cause toxicity by increasing oxidative stress, especially in the brain.