Cargando…

Phosphorylation of seryl-tRNA synthetase by ATM/ATR is essential for hypoxia-induced angiogenesis

Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulato...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yi, Liu, Ze, Zhang, Qian, Vallee, Ingrid, Mo, Zhongying, Kishi, Shuji, Yang, Xiang-Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755189/
https://www.ncbi.nlm.nih.gov/pubmed/33351793
http://dx.doi.org/10.1371/journal.pbio.3000991
Descripción
Sumario:Hypoxia-induced angiogenesis maintains tissue oxygen supply and protects against ischemia but also enhances tumor progression and malignancy. This is mediated through activation of transcription factors like hypoxia-inducible factor 1 (HIF-1) and c-Myc, yet the impact of hypoxia on negative regulators of angiogenesis is unknown. During vascular development, seryl-tRNA synthetase (SerRS) regulates angiogenesis through a novel mechanism by counteracting c-Myc and transcriptionally repressing vascular endothelial growth factor A (VEGFA) expression. Here, we reveal that the transcriptional repressor role of SerRS is inactivated under hypoxia through phosphorylation by ataxia telangiectasia mutated (ATM) and ataxia telangiectasia mutated and RAD3-related (ATR) at Ser101 and Ser241 to attenuate its DNA binding capacity. In zebrafish, SerRS(S101D/S241D), a phosphorylation-mimicry mutant, cannot suppress VEGFA expression to support normal vascular development. Moreover, expression of SerRS(S101A/S241A), a phosphorylation-deficient and constitutively active mutant, prevents hypoxia-induced binding of c-Myc and HIF-1 to the VEGFA promoter, and activation of VEGFA expression. Consistently, SerRS(S101A/S241A) strongly inhibits normal and tumor-derived angiogenesis in mice. Therefore, we reveal a key step regulating hypoxic angiogenesis and highlight the importance of nuclear SerRS in post-developmental angiogenesis regulation in addition to vascular development. The role of nuclear SerRS in inhibiting both c-Myc and HIF-1 may provide therapeutic opportunities to correct dysregulation of angiogenesis in pathological settings.