Cargando…

Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants

By assessing diversity variations of bacterial communities under different rhizocompartment types (i.e., roots, rhizosphere soil, root zone soil, and inter-shrub bulk soil), we explore the structural difference of bacterial communities in different root microenvironments under desert leguminous plan...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ziyuan, Yu, Minghan, Ding, Guodong, Gao, Guanglei, He, Yingying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755220/
https://www.ncbi.nlm.nih.gov/pubmed/33351824
http://dx.doi.org/10.1371/journal.pone.0241057
_version_ 1783626318445805568
author Zhou, Ziyuan
Yu, Minghan
Ding, Guodong
Gao, Guanglei
He, Yingying
author_facet Zhou, Ziyuan
Yu, Minghan
Ding, Guodong
Gao, Guanglei
He, Yingying
author_sort Zhou, Ziyuan
collection PubMed
description By assessing diversity variations of bacterial communities under different rhizocompartment types (i.e., roots, rhizosphere soil, root zone soil, and inter-shrub bulk soil), we explore the structural difference of bacterial communities in different root microenvironments under desert leguminous plant shrubs. Results will enable the influence of niche differentiation of plant roots and root soil on the structural stability of bacterial communities under three desert leguminous plant shrubs to be examined. High-throughput 16S rRNA genome sequencing was used to characterize diversity and structural differences of bacterial microbes in the rhizocompartments of three xeric leguminous plants. Results from this study confirm previous findings relating to niche differentiation in rhizocompartments under related shrubs, and they demonstrate that diversity and structural composition of bacterial communities have significant hierarchical differences across four rhizocompartment types under leguminous plant shrubs. Desert leguminous plants showed significant hierarchical filtration and enrichment of the specific bacterial microbiome across different rhizocompartments (P < 0.05). The dominant bacterial microbiome responsible for the differences in microbial community structure and composition across different niches of desert leguminous plants mainly consisted of Proteobacteria, Actinobacteria, and Bacteroidetes. All soil factors of rhizosphere and root zone soils, except for NO(3)(—)N and TP under C. microphylla and the two Hedysarum spp., recorded significant differences (P < 0.05). Moreover, soil physicochemical factors have a significant impact on driving the differentiation of bacterial communities under desert leguminous plant shrubs. By investigating the influence of niches on the structural difference of soil bacterial communities with the differentiation of rhizocompartments under desert leguminous plant shrubs, we provide data support for the identification of dominant bacteria and future preparation of inocula, and provide a foundation for further study of the host plants-microbial interactions.
format Online
Article
Text
id pubmed-7755220
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-77552202021-01-05 Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants Zhou, Ziyuan Yu, Minghan Ding, Guodong Gao, Guanglei He, Yingying PLoS One Research Article By assessing diversity variations of bacterial communities under different rhizocompartment types (i.e., roots, rhizosphere soil, root zone soil, and inter-shrub bulk soil), we explore the structural difference of bacterial communities in different root microenvironments under desert leguminous plant shrubs. Results will enable the influence of niche differentiation of plant roots and root soil on the structural stability of bacterial communities under three desert leguminous plant shrubs to be examined. High-throughput 16S rRNA genome sequencing was used to characterize diversity and structural differences of bacterial microbes in the rhizocompartments of three xeric leguminous plants. Results from this study confirm previous findings relating to niche differentiation in rhizocompartments under related shrubs, and they demonstrate that diversity and structural composition of bacterial communities have significant hierarchical differences across four rhizocompartment types under leguminous plant shrubs. Desert leguminous plants showed significant hierarchical filtration and enrichment of the specific bacterial microbiome across different rhizocompartments (P < 0.05). The dominant bacterial microbiome responsible for the differences in microbial community structure and composition across different niches of desert leguminous plants mainly consisted of Proteobacteria, Actinobacteria, and Bacteroidetes. All soil factors of rhizosphere and root zone soils, except for NO(3)(—)N and TP under C. microphylla and the two Hedysarum spp., recorded significant differences (P < 0.05). Moreover, soil physicochemical factors have a significant impact on driving the differentiation of bacterial communities under desert leguminous plant shrubs. By investigating the influence of niches on the structural difference of soil bacterial communities with the differentiation of rhizocompartments under desert leguminous plant shrubs, we provide data support for the identification of dominant bacteria and future preparation of inocula, and provide a foundation for further study of the host plants-microbial interactions. Public Library of Science 2020-12-22 /pmc/articles/PMC7755220/ /pubmed/33351824 http://dx.doi.org/10.1371/journal.pone.0241057 Text en © 2020 Zhou et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Zhou, Ziyuan
Yu, Minghan
Ding, Guodong
Gao, Guanglei
He, Yingying
Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title_full Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title_fullStr Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title_full_unstemmed Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title_short Diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
title_sort diversity and structural differences of bacterial microbial communities in rhizocompartments of desert leguminous plants
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755220/
https://www.ncbi.nlm.nih.gov/pubmed/33351824
http://dx.doi.org/10.1371/journal.pone.0241057
work_keys_str_mv AT zhouziyuan diversityandstructuraldifferencesofbacterialmicrobialcommunitiesinrhizocompartmentsofdesertleguminousplants
AT yuminghan diversityandstructuraldifferencesofbacterialmicrobialcommunitiesinrhizocompartmentsofdesertleguminousplants
AT dingguodong diversityandstructuraldifferencesofbacterialmicrobialcommunitiesinrhizocompartmentsofdesertleguminousplants
AT gaoguanglei diversityandstructuraldifferencesofbacterialmicrobialcommunitiesinrhizocompartmentsofdesertleguminousplants
AT heyingying diversityandstructuraldifferencesofbacterialmicrobialcommunitiesinrhizocompartmentsofdesertleguminousplants