Cargando…

proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking

MOTIVATION: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational ap...

Descripción completa

Detalles Bibliográficos
Autores principales: Ambrosetti, Francesco, Olsen, Tobias Hegelund, Olimpieri, Pier Paolo, Jiménez-García, Brian, Milanetti, Edoardo, Marcatilli, Paolo, Bonvin, Alexandre M J J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755408/
https://www.ncbi.nlm.nih.gov/pubmed/32683441
http://dx.doi.org/10.1093/bioinformatics/btaa644
_version_ 1783626349463732224
author Ambrosetti, Francesco
Olsen, Tobias Hegelund
Olimpieri, Pier Paolo
Jiménez-García, Brian
Milanetti, Edoardo
Marcatilli, Paolo
Bonvin, Alexandre M J J
author_facet Ambrosetti, Francesco
Olsen, Tobias Hegelund
Olimpieri, Pier Paolo
Jiménez-García, Brian
Milanetti, Edoardo
Marcatilli, Paolo
Bonvin, Alexandre M J J
author_sort Ambrosetti, Francesco
collection PubMed
description MOTIVATION: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and cheaper alternatives to classical experimental methodologies used for the study of antibody–antigen complexes. RESULTS: Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive the docking in HADDOCK. AVAILABILITY AND IMPLEMENTATION: The proABC-2 server is freely available at: https://wenmr.science.uu.nl/proabc2/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-7755408
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-77554082020-12-29 proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking Ambrosetti, Francesco Olsen, Tobias Hegelund Olimpieri, Pier Paolo Jiménez-García, Brian Milanetti, Edoardo Marcatilli, Paolo Bonvin, Alexandre M J J Bioinformatics Applications Notes MOTIVATION: Monoclonal antibodies are essential tools in the contemporary therapeutic armory. Understanding how these recognize their antigen is a fundamental step in their rational design and engineering. The rising amount of publicly available data is catalyzing the development of computational approaches able to offer valuable, faster and cheaper alternatives to classical experimental methodologies used for the study of antibody–antigen complexes. RESULTS: Here, we present proABC-2, an update of the original random-forest antibody paratope predictor, based on a convolutional neural network algorithm. We also demonstrate how the predictions can be fruitfully used to drive the docking in HADDOCK. AVAILABILITY AND IMPLEMENTATION: The proABC-2 server is freely available at: https://wenmr.science.uu.nl/proabc2/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-07-19 /pmc/articles/PMC7755408/ /pubmed/32683441 http://dx.doi.org/10.1093/bioinformatics/btaa644 Text en © The Author(s) 2020. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Notes
Ambrosetti, Francesco
Olsen, Tobias Hegelund
Olimpieri, Pier Paolo
Jiménez-García, Brian
Milanetti, Edoardo
Marcatilli, Paolo
Bonvin, Alexandre M J J
proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title_full proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title_fullStr proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title_full_unstemmed proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title_short proABC-2: PRediction of AntiBody contacts v2 and its application to information-driven docking
title_sort proabc-2: prediction of antibody contacts v2 and its application to information-driven docking
topic Applications Notes
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755408/
https://www.ncbi.nlm.nih.gov/pubmed/32683441
http://dx.doi.org/10.1093/bioinformatics/btaa644
work_keys_str_mv AT ambrosettifrancesco proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT olsentobiashegelund proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT olimpieripierpaolo proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT jimenezgarciabrian proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT milanettiedoardo proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT marcatillipaolo proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking
AT bonvinalexandremjj proabc2predictionofantibodycontactsv2anditsapplicationtoinformationdrivendocking