Cargando…
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampli...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755412/ https://www.ncbi.nlm.nih.gov/pubmed/32663244 http://dx.doi.org/10.1093/bioinformatics/btaa637 |
Sumario: | MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited. RESULTS: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are openly available at https://bitbucket.org/anthakki/qsne/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|