Cargando…
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampli...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755412/ https://www.ncbi.nlm.nih.gov/pubmed/32663244 http://dx.doi.org/10.1093/bioinformatics/btaa637 |
_version_ | 1783626350171521024 |
---|---|
author | Häkkinen, Antti Koiranen, Juha Casado, Julia Kaipio, Katja Lehtonen, Oskari Petrucci, Eleonora Hynninen, Johanna Hietanen, Sakari Carpén, Olli Pasquini, Luca Biffoni, Mauro Lehtonen, Rainer Hautaniemi, Sampsa |
author_facet | Häkkinen, Antti Koiranen, Juha Casado, Julia Kaipio, Katja Lehtonen, Oskari Petrucci, Eleonora Hynninen, Johanna Hietanen, Sakari Carpén, Olli Pasquini, Luca Biffoni, Mauro Lehtonen, Rainer Hautaniemi, Sampsa |
author_sort | Häkkinen, Antti |
collection | PubMed |
description | MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited. RESULTS: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are openly available at https://bitbucket.org/anthakki/qsne/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-7755412 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-77554122020-12-29 qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets Häkkinen, Antti Koiranen, Juha Casado, Julia Kaipio, Katja Lehtonen, Oskari Petrucci, Eleonora Hynninen, Johanna Hietanen, Sakari Carpén, Olli Pasquini, Luca Biffoni, Mauro Lehtonen, Rainer Hautaniemi, Sampsa Bioinformatics Original Papers MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited. RESULTS: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are openly available at https://bitbucket.org/anthakki/qsne/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-07-14 /pmc/articles/PMC7755412/ /pubmed/32663244 http://dx.doi.org/10.1093/bioinformatics/btaa637 Text en © The Author(s) 2020. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Papers Häkkinen, Antti Koiranen, Juha Casado, Julia Kaipio, Katja Lehtonen, Oskari Petrucci, Eleonora Hynninen, Johanna Hietanen, Sakari Carpén, Olli Pasquini, Luca Biffoni, Mauro Lehtonen, Rainer Hautaniemi, Sampsa qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title | qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title_full | qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title_fullStr | qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title_full_unstemmed | qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title_short | qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets |
title_sort | qsne: quadratic rate t-sne optimizer with automatic parameter tuning for large datasets |
topic | Original Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755412/ https://www.ncbi.nlm.nih.gov/pubmed/32663244 http://dx.doi.org/10.1093/bioinformatics/btaa637 |
work_keys_str_mv | AT hakkinenantti qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT koiranenjuha qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT casadojulia qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT kaipiokatja qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT lehtonenoskari qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT petruccieleonora qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT hynninenjohanna qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT hietanensakari qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT carpenolli qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT pasquiniluca qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT biffonimauro qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT lehtonenrainer qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets AT hautaniemisampsa qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets |