Cargando…

qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets

MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampli...

Descripción completa

Detalles Bibliográficos
Autores principales: Häkkinen, Antti, Koiranen, Juha, Casado, Julia, Kaipio, Katja, Lehtonen, Oskari, Petrucci, Eleonora, Hynninen, Johanna, Hietanen, Sakari, Carpén, Olli, Pasquini, Luca, Biffoni, Mauro, Lehtonen, Rainer, Hautaniemi, Sampsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755412/
https://www.ncbi.nlm.nih.gov/pubmed/32663244
http://dx.doi.org/10.1093/bioinformatics/btaa637
_version_ 1783626350171521024
author Häkkinen, Antti
Koiranen, Juha
Casado, Julia
Kaipio, Katja
Lehtonen, Oskari
Petrucci, Eleonora
Hynninen, Johanna
Hietanen, Sakari
Carpén, Olli
Pasquini, Luca
Biffoni, Mauro
Lehtonen, Rainer
Hautaniemi, Sampsa
author_facet Häkkinen, Antti
Koiranen, Juha
Casado, Julia
Kaipio, Katja
Lehtonen, Oskari
Petrucci, Eleonora
Hynninen, Johanna
Hietanen, Sakari
Carpén, Olli
Pasquini, Luca
Biffoni, Mauro
Lehtonen, Rainer
Hautaniemi, Sampsa
author_sort Häkkinen, Antti
collection PubMed
description MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited. RESULTS: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are openly available at https://bitbucket.org/anthakki/qsne/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-7755412
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-77554122020-12-29 qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets Häkkinen, Antti Koiranen, Juha Casado, Julia Kaipio, Katja Lehtonen, Oskari Petrucci, Eleonora Hynninen, Johanna Hietanen, Sakari Carpén, Olli Pasquini, Luca Biffoni, Mauro Lehtonen, Rainer Hautaniemi, Sampsa Bioinformatics Original Papers MOTIVATION: Non-parametric dimensionality reduction techniques, such as t-distributed stochastic neighbor embedding (t-SNE), are the most frequently used methods in the exploratory analysis of single-cell datasets. Current implementations scale poorly to massive datasets and often require downsampling or interpolative approximations, which can leave less-frequent populations undiscovered and much information unexploited. RESULTS: We implemented a fast t-SNE package, qSNE, which uses a quasi-Newton optimizer, allowing quadratic convergence rate and automatic perplexity (level of detail) optimizer. Our results show that these improvements make qSNE significantly faster than regular t-SNE packages and enables full analysis of large datasets, such as mass cytometry data, without downsampling. AVAILABILITY AND IMPLEMENTATION: Source code and documentation are openly available at https://bitbucket.org/anthakki/qsne/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2020-07-14 /pmc/articles/PMC7755412/ /pubmed/32663244 http://dx.doi.org/10.1093/bioinformatics/btaa637 Text en © The Author(s) 2020. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Papers
Häkkinen, Antti
Koiranen, Juha
Casado, Julia
Kaipio, Katja
Lehtonen, Oskari
Petrucci, Eleonora
Hynninen, Johanna
Hietanen, Sakari
Carpén, Olli
Pasquini, Luca
Biffoni, Mauro
Lehtonen, Rainer
Hautaniemi, Sampsa
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title_full qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title_fullStr qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title_full_unstemmed qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title_short qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
title_sort qsne: quadratic rate t-sne optimizer with automatic parameter tuning for large datasets
topic Original Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755412/
https://www.ncbi.nlm.nih.gov/pubmed/32663244
http://dx.doi.org/10.1093/bioinformatics/btaa637
work_keys_str_mv AT hakkinenantti qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT koiranenjuha qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT casadojulia qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT kaipiokatja qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT lehtonenoskari qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT petruccieleonora qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT hynninenjohanna qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT hietanensakari qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT carpenolli qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT pasquiniluca qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT biffonimauro qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT lehtonenrainer qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets
AT hautaniemisampsa qsnequadraticratetsneoptimizerwithautomaticparametertuningforlargedatasets