Cargando…
Exploring generative deep learning for omics data using log-linear models
MOTIVATION: Following many successful applications to image data, deep learning is now also increasingly considered for omics data. In particular, generative deep learning not only provides competitive prediction performance, but also allows for uncovering structure by generating synthetic samples....
Autores principales: | Hess, Moritz, Hackenberg, Maren, Binder, Harald |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755415/ https://www.ncbi.nlm.nih.gov/pubmed/32647888 http://dx.doi.org/10.1093/bioinformatics/btaa623 |
Ejemplares similares
-
The performance of deep generative models for learning joint embeddings of single-cell multi-omics data
por: Brombacher, Eva, et al.
Publicado: (2022) -
Deep generative models in DataSHIELD
por: Lenz, Stefan, et al.
Publicado: (2021) -
Interpretable generative deep learning: an illustration with single cell gene expression data
por: Treppner, Martin, et al.
Publicado: (2022) -
Log-linear models
por: Christensen, Ronald
Publicado: (1990) -
Discovering generative models from event logs: data-driven simulation vs deep learning
por: Camargo, Manuel, et al.
Publicado: (2021)