Cargando…
A Lightweight Object Detection Network for Real-Time Detection of Driver Handheld Call on Embedded Devices
It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper integrates 5 × 5 deep detachable convolution ke...
Autores principales: | Zhao, Zuopeng, Zhang, Zhongxin, Xu, Xinzheng, Xu, Yi, Yan, Hualin, Zhang, Lan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755469/ https://www.ncbi.nlm.nih.gov/pubmed/33381158 http://dx.doi.org/10.1155/2020/6616584 |
Ejemplares similares
-
Driver Fatigue Detection Based on Convolutional Neural Networks Using EM-CNN
por: Zhao, Zuopeng, et al.
Publicado: (2020) -
SAI-YOLO: A Lightweight Network for Real-Time Detection of Driver Mask-Wearing Specification on Resource-Constrained Devices
por: Zhao, Zuopeng, et al.
Publicado: (2021) -
Lightweight and Energy-Efficient Deep Learning Accelerator for Real-Time Object Detection on Edge Devices
por: Kim, Kyungho, et al.
Publicado: (2023) -
An Embedded Portable Lightweight Platform for Real-Time Early Smoke Detection
por: Liu, Bowen, et al.
Publicado: (2022) -
Efficient Object Detection Based on Masking Semantic Segmentation Region for Lightweight Embedded Processors
por: Yun, Heuijee, et al.
Publicado: (2022)