Cargando…
Task Transfer Learning for EEG Classification in Motor Imagery-Based BCI System
The motor-imagery brain-computer interface system (MI-BCI) has a board prospect for development. However, long calibration time and lack of enough MI commands limit its use in practice. In order to enlarge the command set, we add the combinations of traditional MI commands as new commands into the c...
Autores principales: | Zheng, Xuanci, Li, Jie, Ji, Hongfei, Duan, Lili, Li, Maozhen, Pang, Zilong, Zhuang, Jie, Rongrong, Lu, Tianhao, Gao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755477/ https://www.ncbi.nlm.nih.gov/pubmed/33381220 http://dx.doi.org/10.1155/2020/6056383 |
Ejemplares similares
-
Classification of motor imagery tasks for BCI with multiresolution analysis and multiobjective feature selection
por: Ortega, Julio, et al.
Publicado: (2016) -
Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users
por: Tibrewal, Navneet, et al.
Publicado: (2022) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
Bridging the BCI illiteracy gap: a subject-to-subject semantic style transfer for EEG-based motor imagery classification
por: Kim, Da-Hyun, et al.
Publicado: (2023) -
Using brain connectivity metrics from synchrostates to perform motor imagery classification in EEG-based BCI systems
por: Santamaria, Lorena, et al.
Publicado: (2018)