Cargando…
Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice
Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulat...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755487/ https://www.ncbi.nlm.nih.gov/pubmed/33381191 http://dx.doi.org/10.1155/2020/8885154 |
_version_ | 1783626359390601216 |
---|---|
author | Zeng, Huihong Cheng, Jiaoqi Fan, Ying Luan, Yingying Yang, Juan Wang, Feixuan Yang, Shuo Shao, Lijian |
author_facet | Zeng, Huihong Cheng, Jiaoqi Fan, Ying Luan, Yingying Yang, Juan Wang, Feixuan Yang, Shuo Shao, Lijian |
author_sort | Zeng, Huihong |
collection | PubMed |
description | Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro. |
format | Online Article Text |
id | pubmed-7755487 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-77554872020-12-29 Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice Zeng, Huihong Cheng, Jiaoqi Fan, Ying Luan, Yingying Yang, Juan Wang, Feixuan Yang, Shuo Shao, Lijian Stem Cells Int Review Article Development of hematopoietic stem cells is a complex process, which has been extensively investigated. Hematopoietic stem cells (HSCs) in mouse fetal liver are highly expanded to prepare for mobilization of HSCs into the fetal bone marrow. It is not completely known how the fetal liver niche regulates HSC expansion without loss of self-renewal ability. We reviewed current progress about the effects of fetal liver niche, chemokine, cytokine, and signaling pathways on HSC self-renewal, proliferation, and expansion. We discussed the molecular regulations of fetal HSC expansion in mouse and zebrafish. It is also unknown how HSCs from the fetal liver mobilize, circulate, and reside into the fetal bone marrow niche. We reviewed how extrinsic and intrinsic factors regulate mobilization of fetal liver HSCs into the fetal bone marrow, which provides tools to improve HSC engraftment efficiency during HSC transplantation. Understanding the regulation of fetal liver HSC mobilization into the fetal bone marrow will help us to design proper clinical therapeutic protocol for disease treatment like leukemia during pregnancy. We prospect that fetal cells, including hepatocytes and endothelial and hematopoietic cells, might regulate fetal liver HSC expansion. Components from vascular endothelial cells and bones might also modulate the lodging of fetal liver HSCs into the bone marrow. The current review holds great potential to deeply understand the molecular regulations of HSCs in the fetal liver and bone marrow in mammals, which will be helpful to efficiently expand HSCs in vitro. Hindawi 2020-12-15 /pmc/articles/PMC7755487/ /pubmed/33381191 http://dx.doi.org/10.1155/2020/8885154 Text en Copyright © 2020 Huihong Zeng et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Zeng, Huihong Cheng, Jiaoqi Fan, Ying Luan, Yingying Yang, Juan Wang, Feixuan Yang, Shuo Shao, Lijian Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title | Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title_full | Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title_fullStr | Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title_full_unstemmed | Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title_short | Molecular Modulation of Fetal Liver Hematopoietic Stem Cell Mobilization into Fetal Bone Marrow in Mice |
title_sort | molecular modulation of fetal liver hematopoietic stem cell mobilization into fetal bone marrow in mice |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755487/ https://www.ncbi.nlm.nih.gov/pubmed/33381191 http://dx.doi.org/10.1155/2020/8885154 |
work_keys_str_mv | AT zenghuihong molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT chengjiaoqi molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT fanying molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT luanyingying molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT yangjuan molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT wangfeixuan molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT yangshuo molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice AT shaolijian molecularmodulationoffetalliverhematopoieticstemcellmobilizationintofetalbonemarrowinmice |