Cargando…
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
Recently, deep convolutional neural networks (DCNNs) have attained human-level performances on challenging object recognition tasks owing to their complex internal representation. However, it remains unclear how objects are represented in DCNNs with an overwhelming number of features and non-linear...
Autores principales: | Liu, Xingyu, Zhen, Zonglei, Liu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755594/ https://www.ncbi.nlm.nih.gov/pubmed/33362499 http://dx.doi.org/10.3389/fncom.2020.578158 |
Ejemplares similares
-
Semantic Relatedness Emerges in Deep Convolutional Neural Networks Designed for Object Recognition
por: Huang, Taicheng, et al.
Publicado: (2021) -
The Face Module Emerged in a Deep Convolutional Neural Network Selectively Deprived of Face Experience
por: Xu, Shan, et al.
Publicado: (2021) -
DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains
por: Chen, Xiayu, et al.
Publicado: (2020) -
Sparsey™: event recognition via deep hierarchical sparse distributed codes
por: Rinkus, Gerard J.
Publicado: (2014) -
Hierarchical Neural Representation of Dreamed Objects Revealed by Brain Decoding with Deep Neural Network Features
por: Horikawa, Tomoyasu, et al.
Publicado: (2017)