Cargando…
Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women
INTRODUCTION: We investigated the relationship between gut microbiota composition and osteoporosis/fracture risk in Japanese postmenopausal women using 16S rRNA gene sequencing, FRAX, bone mineral density, biochemical bone parameters, and a self-administered questionnaire. Variation in abundance of...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755620/ https://www.ncbi.nlm.nih.gov/pubmed/33241467 http://dx.doi.org/10.1007/s00198-020-05728-y |
_version_ | 1783626386973392896 |
---|---|
author | Ozaki, D. Kubota, R. Maeno, T. Abdelhakim, M. Hitosugi, N. |
author_facet | Ozaki, D. Kubota, R. Maeno, T. Abdelhakim, M. Hitosugi, N. |
author_sort | Ozaki, D. |
collection | PubMed |
description | INTRODUCTION: We investigated the relationship between gut microbiota composition and osteoporosis/fracture risk in Japanese postmenopausal women using 16S rRNA gene sequencing, FRAX, bone mineral density, biochemical bone parameters, and a self-administered questionnaire. Variation in abundance of specific microbiota was found to be significantly associated with fracture risk and vitamin K levels. Gut microbiota data with respect to bone metabolism and fracture risk is limited. Vitamin K is produced by certain intestinal bacteria and has been reported to play a role in maintaining bone quality. PURPOSE: We investigated relationships among gut microbiota composition, bone metabolism, and fracture risk in postmenopausal Japanese women. METHODS: Bone mineral density (BMD) was evaluated in 38 postmenopausal women (mean age 62.9 years) using forearm dual-energy X-ray absorptiometry. We collected and analyzed serum bone turnover markers (vitamin K fraction and tartrate-resistant acid phosphatase 5b; TRACP-5b), gut microbiota profiling (16S rRNA gene sequencing), and self-administered questionnaire data, including fracture history and vitamin K intake. Vitamin K2, BMD, and TRACP-5b data were divided into high- and low-level groups using cutoff values of 0.06 ng/mL, 87.05%, and 420 mU/dL, respectively; the proportions of bacteria were analyzed. Fracture incidence and relative risk were investigated for each bacterium. RESULTS: The genus Bacteroides was predominant in the high vitamin K2 group (29.73% vs 21.58%, P = 0.022). Fracture incidence was significantly higher in the low Bacteroides group, with a 5.6-times higher risk ratio of fracture history. The family Rikenellaceae was more abundant in the low BMD group and more abundant in the high TRACP-5b group (2.15% vs 0.82%, P = 0.004; 2.38% vs 1.12%, P = 0.013, respectively). CONCLUSION: Bacteroides and Rikenellaceae may be involved in bone metabolism and fracture risk. Further investigations of the underlying microbiota-related pathways in bone metabolism may reveal treatment strategies, and facilitate the prevention of osteoporosis. |
format | Online Article Text |
id | pubmed-7755620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer London |
record_format | MEDLINE/PubMed |
spelling | pubmed-77556202020-12-28 Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women Ozaki, D. Kubota, R. Maeno, T. Abdelhakim, M. Hitosugi, N. Osteoporos Int Original Article INTRODUCTION: We investigated the relationship between gut microbiota composition and osteoporosis/fracture risk in Japanese postmenopausal women using 16S rRNA gene sequencing, FRAX, bone mineral density, biochemical bone parameters, and a self-administered questionnaire. Variation in abundance of specific microbiota was found to be significantly associated with fracture risk and vitamin K levels. Gut microbiota data with respect to bone metabolism and fracture risk is limited. Vitamin K is produced by certain intestinal bacteria and has been reported to play a role in maintaining bone quality. PURPOSE: We investigated relationships among gut microbiota composition, bone metabolism, and fracture risk in postmenopausal Japanese women. METHODS: Bone mineral density (BMD) was evaluated in 38 postmenopausal women (mean age 62.9 years) using forearm dual-energy X-ray absorptiometry. We collected and analyzed serum bone turnover markers (vitamin K fraction and tartrate-resistant acid phosphatase 5b; TRACP-5b), gut microbiota profiling (16S rRNA gene sequencing), and self-administered questionnaire data, including fracture history and vitamin K intake. Vitamin K2, BMD, and TRACP-5b data were divided into high- and low-level groups using cutoff values of 0.06 ng/mL, 87.05%, and 420 mU/dL, respectively; the proportions of bacteria were analyzed. Fracture incidence and relative risk were investigated for each bacterium. RESULTS: The genus Bacteroides was predominant in the high vitamin K2 group (29.73% vs 21.58%, P = 0.022). Fracture incidence was significantly higher in the low Bacteroides group, with a 5.6-times higher risk ratio of fracture history. The family Rikenellaceae was more abundant in the low BMD group and more abundant in the high TRACP-5b group (2.15% vs 0.82%, P = 0.004; 2.38% vs 1.12%, P = 0.013, respectively). CONCLUSION: Bacteroides and Rikenellaceae may be involved in bone metabolism and fracture risk. Further investigations of the underlying microbiota-related pathways in bone metabolism may reveal treatment strategies, and facilitate the prevention of osteoporosis. Springer London 2020-11-25 2021 /pmc/articles/PMC7755620/ /pubmed/33241467 http://dx.doi.org/10.1007/s00198-020-05728-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Original Article Ozaki, D. Kubota, R. Maeno, T. Abdelhakim, M. Hitosugi, N. Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title | Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title_full | Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title_fullStr | Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title_full_unstemmed | Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title_short | Association between gut microbiota, bone metabolism, and fracture risk in postmenopausal Japanese women |
title_sort | association between gut microbiota, bone metabolism, and fracture risk in postmenopausal japanese women |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755620/ https://www.ncbi.nlm.nih.gov/pubmed/33241467 http://dx.doi.org/10.1007/s00198-020-05728-y |
work_keys_str_mv | AT ozakid associationbetweengutmicrobiotabonemetabolismandfractureriskinpostmenopausaljapanesewomen AT kubotar associationbetweengutmicrobiotabonemetabolismandfractureriskinpostmenopausaljapanesewomen AT maenot associationbetweengutmicrobiotabonemetabolismandfractureriskinpostmenopausaljapanesewomen AT abdelhakimm associationbetweengutmicrobiotabonemetabolismandfractureriskinpostmenopausaljapanesewomen AT hitosugin associationbetweengutmicrobiotabonemetabolismandfractureriskinpostmenopausaljapanesewomen |