Cargando…
Deep learning for the rapid automatic quantification and characterization of rotator cuff muscle degeneration from shoulder CT datasets
OBJECTIVES: This study aimed at developing a convolutional neural network (CNN) able to automatically quantify and characterize the level of degeneration of rotator cuff (RC) muscles from shoulder CT images including muscle atrophy and fatty infiltration. METHODS: One hundred three shoulder CT scans...
Autores principales: | Taghizadeh, Elham, Truffer, Oskar, Becce, Fabio, Eminian, Sylvain, Gidoin, Stacey, Terrier, Alexandre, Farron, Alain, Büchler, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755645/ https://www.ncbi.nlm.nih.gov/pubmed/32696257 http://dx.doi.org/10.1007/s00330-020-07070-7 |
Ejemplares similares
-
Shoulder pain across more movements is not related to more rotator cuff tendon findings in people with chronic shoulder pain diagnosed with subacromial pain syndrome
por: Alaiti, Rafael Krasic, et al.
Publicado: (2021) -
Detection of rotator cuff tears: the value of MRI following ultrasound
por: Rutten, Matthieu J. C. M., et al.
Publicado: (2009) -
Radiological and clinical predictors of long-term outcome in rotator cuff calcific tendinitis
por: de Witte, Pieter Bas, et al.
Publicado: (2016) -
Prognostic factors for the outcome of needle aspiration of calcific deposits for rotator cuff calcific tendinitis
por: Oudelaar, Bart W., et al.
Publicado: (2020) -
Association of the Posterior Acromion Extension with Glenoid Retroversion: A CT Study in Normal and Osteoarthritic Shoulders
por: Terrier, Alexandre, et al.
Publicado: (2022)