Cargando…
Automated quantification of COVID-19 severity and progression using chest CT images
OBJECTIVE: To develop and test computer software to detect, quantify, and monitor progression of pneumonia associated with COVID-19 using chest CT scans. METHODS: One hundred twenty chest CT scans from subjects with lung infiltrates were used for training deep learning algorithms to segment lung reg...
Autores principales: | Pu, Jiantao, Leader, Joseph K., Bandos, Andriy, Ke, Shi, Wang, Jing, Shi, Junli, Du, Pang, Guo, Youmin, Wenzel, Sally E., Fuhrman, Carl R., Wilson, David O., Sciurba, Frank C., Jin, Chenwang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7755837/ https://www.ncbi.nlm.nih.gov/pubmed/32789756 http://dx.doi.org/10.1007/s00330-020-07156-2 |
Ejemplares similares
-
Any unique image biomarkers associated with COVID-19?
por: Pu, Jiantao, et al.
Publicado: (2020) -
Computed tomography semi-automated lung volume quantification in SARS-CoV-2-related pneumonia
por: Ippolito, Davide, et al.
Publicado: (2020) -
Commercial AI solutions in detecting COVID-19 pneumonia in chest CT: not yet ready for clinical implementation?
por: Jungmann, Florian, et al.
Publicado: (2021) -
Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening
por: Pan, Yaling, et al.
Publicado: (2020) -
Automated quantification of penile curvature using artificial intelligence
por: Abbas, Tariq O., et al.
Publicado: (2022)