Cargando…
Potentially adaptive SARS-CoV-2 mutations discovered with novel spatiotemporal and explainable AI models
BACKGROUND: A mechanistic understanding of the spread of SARS-CoV-2 and diligent tracking of ongoing mutagenesis are of key importance to plan robust strategies for confining its transmission. Large numbers of available sequences and their dates of transmission provide an unprecedented opportunity t...
Autores principales: | Garvin, Michael R., T. Prates, Erica, Pavicic, Mirko, Jones, Piet, Amos, B. Kirtley, Geiger, Armin, Shah, Manesh B., Streich, Jared, Felipe Machado Gazolla, Joao Gabriel, Kainer, David, Cliff, Ashley, Romero, Jonathon, Keith, Nathan, Brown, James B., Jacobson, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756312/ https://www.ncbi.nlm.nih.gov/pubmed/33357233 http://dx.doi.org/10.1186/s13059-020-02191-0 |
Ejemplares similares
-
Potential Pathogenicity Determinants Identified from Structural Proteomics of SARS-CoV and SARS-CoV-2
por: Prates, Erica T, et al.
Publicado: (2020) -
Evaluating the performance of random forest and iterative random forest based methods when applied to gene expression data
por: Walker, Angelica M., et al.
Publicado: (2022) -
Quantum biological insights into CRISPR-Cas9 sgRNA efficiency from explainable-AI driven feature engineering
por: Noshay, Jaclyn M, et al.
Publicado: (2023) -
Using iterative random forest to find geospatial environmental and Sociodemographic predictors of suicide attempts
por: Pavicic, Mirko, et al.
Publicado: (2023) -
Few-Shot Learning Enables Population-Scale Analysis of Leaf Traits in Populus trichocarpa
por: Lagergren, John, et al.
Publicado: (2023)