Cargando…
Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images
PURPOSE: The purpose of this work was to evaluate the performance of X‐Net, a multiview deep learning architecture, to automatically label vertebral levels (S2‐C1) in palliative radiotherapy simulation CT scans. METHODS: For each patient CT scan, our automated approach 1) segmented spinal canal usin...
Autores principales: | Netherton, Tucker J., Rhee, Dong Joo, Cardenas, Carlos E., Chung, Caroline, Klopp, Ann H., Peterson, Christine B., Howell, Rebecca M., Balter, Peter A., Court, Laurence E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756475/ https://www.ncbi.nlm.nih.gov/pubmed/33459402 http://dx.doi.org/10.1002/mp.14415 |
Ejemplares similares
-
Automatic contouring system for cervical cancer using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2020) -
Automatic detection of contouring errors using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2019) -
Automatic quantitative analysis of pulmonary vascular morphology in CT images
por: Zhai, Zhiwei, et al.
Publicado: (2019) -
Combining natural and artificial intelligence for robust automatic anatomy segmentation: Application in neck and thorax auto‐contouring
por: Udupa, Jayaram K., et al.
Publicado: (2022) -
An unsupervised automatic segmentation algorithm for breast tissue classification of dedicated breast computed tomography images
por: Caballo, Marco, et al.
Publicado: (2018)