Cargando…
Chalcogen‐Expanded Unsaturated Silicon Clusters: Thia‐, Selena‐, and Tellurasiliconoids
Reactions of silylenes with heavier chalcogens (E) typically result in Si=E double bonds or their π‐addition products. In contrast, the oxidation of a silylene‐functionalized unsaturated silicon cluster (siliconoid) with Group 16 elements selectively yields cluster expanded siliconoids Si(7)E (E=S,...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756652/ https://www.ncbi.nlm.nih.gov/pubmed/32700779 http://dx.doi.org/10.1002/chem.202003180 |
Sumario: | Reactions of silylenes with heavier chalcogens (E) typically result in Si=E double bonds or their π‐addition products. In contrast, the oxidation of a silylene‐functionalized unsaturated silicon cluster (siliconoid) with Group 16 elements selectively yields cluster expanded siliconoids Si(7)E (E=S, Se, Te) fully preserving the unsaturated nature of the cluster scaffold as evident from the NMR signatures of the products. Mechanistic considerations by DFT calculations suggest the intermediacy of a Si(6) siliconoid with exohedral Si=E functionality. The reaction thus may serve as model system for the oxidation of surface‐bonded silylenes at Si(100) by chalcogens and their diffusion into the silicon bulk. |
---|