Cargando…
Machine‐learning–based early prediction of end‐stage renal disease in patients with diabetic kidney disease using clinical trials data
AIM: To predict end‐stage renal disease (ESRD) in patients with type 2 diabetes by using machine‐learning models with multiple baseline demographic and clinical characteristics. MATERIALS AND METHODS: In total, 11 789 patients with type 2 diabetes and nephropathy from three clinical trials, RENAAL (...
Autores principales: | Belur Nagaraj, Sunil, Pena, Michelle J., Ju, Wenjun, Heerspink, Hiddo L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756814/ https://www.ncbi.nlm.nih.gov/pubmed/32844582 http://dx.doi.org/10.1111/dom.14178 |
Ejemplares similares
-
Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease
por: Pena, Michelle J., et al.
Publicado: (2016) -
Machine learning algorithm for early detection of end-stage renal disease
por: Segal, Zvi, et al.
Publicado: (2020) -
Machine learning to predict end stage kidney disease in chronic kidney disease
por: Bai, Qiong, et al.
Publicado: (2022) -
Multimarker Panels in Diabetic Kidney Disease: The Way to Improved Clinical Trial Design and Clinical Practice?
por: Perco, Paul, et al.
Publicado: (2018) -
Endothelin receptor antagonists in kidney protection for diabetic kidney disease and beyond?
por: Chung, Edmund Y. M., et al.
Publicado: (2022)