Cargando…

The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory

When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C−O expansion can easily be understood by π‐back‐donation, which results in a population of the CO's π...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Lubbe, Stephanie C. C., Vermeeren, Pascal, Fonseca Guerra, Célia, Bickelhaupt, F. Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756819/
https://www.ncbi.nlm.nih.gov/pubmed/33045113
http://dx.doi.org/10.1002/chem.202003768
_version_ 1783626624978124800
author van der Lubbe, Stephanie C. C.
Vermeeren, Pascal
Fonseca Guerra, Célia
Bickelhaupt, F. Matthias
author_facet van der Lubbe, Stephanie C. C.
Vermeeren, Pascal
Fonseca Guerra, Célia
Bickelhaupt, F. Matthias
author_sort van der Lubbe, Stephanie C. C.
collection PubMed
description When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C−O expansion can easily be understood by π‐back‐donation, which results in a population of the CO's π*‐antibonding orbital and hence a weakening of its bond. Nonclassical carbonyl ligands are less straightforward to explain, and their nature is still subject of an ongoing debate. In this work, we studied five isoelectronic octahedral complexes, namely Fe(CO)(6) (2+), Mn(CO)(6) (+), Cr(CO)(6), V(CO)(6) (−) and Ti(CO)(6) (2−), at the ZORA‐BLYP/TZ2P level of theory to explain this nonclassical behavior in the framework of Kohn–Sham molecular orbital theory. We show that there are two competing forces that affect the C−O bond length, namely electrostatic interactions (favoring C−O contraction) and π‐back‐donation (favoring C−O expansion). It is a balance between those two terms that determines whether the carbonyl is classical or nonclassical. By further decomposing the electrostatic interaction ΔV (elstat) into four fundamental terms, we are able to rationalize why ΔV (elstat) gives rise to the nonclassical behavior, leading to new insights into the driving forces behind C−O contraction.
format Online
Article
Text
id pubmed-7756819
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77568192020-12-28 The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory van der Lubbe, Stephanie C. C. Vermeeren, Pascal Fonseca Guerra, Célia Bickelhaupt, F. Matthias Chemistry Full Papers When carbonyl ligands coordinate to transition metals, their bond distance either increases (classical) or decreases (nonclassical) with respect to the bond length in the isolated CO molecule. C−O expansion can easily be understood by π‐back‐donation, which results in a population of the CO's π*‐antibonding orbital and hence a weakening of its bond. Nonclassical carbonyl ligands are less straightforward to explain, and their nature is still subject of an ongoing debate. In this work, we studied five isoelectronic octahedral complexes, namely Fe(CO)(6) (2+), Mn(CO)(6) (+), Cr(CO)(6), V(CO)(6) (−) and Ti(CO)(6) (2−), at the ZORA‐BLYP/TZ2P level of theory to explain this nonclassical behavior in the framework of Kohn–Sham molecular orbital theory. We show that there are two competing forces that affect the C−O bond length, namely electrostatic interactions (favoring C−O contraction) and π‐back‐donation (favoring C−O expansion). It is a balance between those two terms that determines whether the carbonyl is classical or nonclassical. By further decomposing the electrostatic interaction ΔV (elstat) into four fundamental terms, we are able to rationalize why ΔV (elstat) gives rise to the nonclassical behavior, leading to new insights into the driving forces behind C−O contraction. John Wiley and Sons Inc. 2020-11-03 2020-12-01 /pmc/articles/PMC7756819/ /pubmed/33045113 http://dx.doi.org/10.1002/chem.202003768 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Full Papers
van der Lubbe, Stephanie C. C.
Vermeeren, Pascal
Fonseca Guerra, Célia
Bickelhaupt, F. Matthias
The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title_full The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title_fullStr The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title_full_unstemmed The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title_short The Nature of Nonclassical Carbonyl Ligands Explained by Kohn–Sham Molecular Orbital Theory
title_sort nature of nonclassical carbonyl ligands explained by kohn–sham molecular orbital theory
topic Full Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756819/
https://www.ncbi.nlm.nih.gov/pubmed/33045113
http://dx.doi.org/10.1002/chem.202003768
work_keys_str_mv AT vanderlubbestephaniecc thenatureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT vermeerenpascal thenatureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT fonsecaguerracelia thenatureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT bickelhauptfmatthias thenatureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT vanderlubbestephaniecc natureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT vermeerenpascal natureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT fonsecaguerracelia natureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory
AT bickelhauptfmatthias natureofnonclassicalcarbonylligandsexplainedbykohnshammolecularorbitaltheory