Cargando…
UV‐Induced 1,3,4‐Oxadiazole Formation from 5‐Substituted Tetrazoles and Carboxylic Acids in Flow
A range of 1,3,4‐oxadiazoles have been synthesized using a UV‐B activated flow approach starting from carboxylic acids and 5‐substituted tetrazoles. The application of UV light represents an attractive alternative to the traditional thermolytic approach and has demonstrated comparable efficiency and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756889/ https://www.ncbi.nlm.nih.gov/pubmed/32786060 http://dx.doi.org/10.1002/chem.202002896 |
Sumario: | A range of 1,3,4‐oxadiazoles have been synthesized using a UV‐B activated flow approach starting from carboxylic acids and 5‐substituted tetrazoles. The application of UV light represents an attractive alternative to the traditional thermolytic approach and has demonstrated comparable efficiency and versatility, with a diverse substrate scope, including the incorporation of highly substituted amino acids. |
---|