Cargando…

Understanding personalized dynamics to inform precision medicine: a dynamic time warp analysis of 255 depressed inpatients

BACKGROUND: Major depressive disorder (MDD) shows large heterogeneity of symptoms between patients, but within patients, particular symptom clusters may show similar trajectories. While symptom clusters and networks have mostly been studied using cross-sectional designs, temporal dynamics of symptom...

Descripción completa

Detalles Bibliográficos
Autores principales: Hebbrecht, K., Stuivenga, M., Birkenhäger, T., Morrens, M., Fried, E. I., Sabbe, B., Giltay, E. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7756914/
https://www.ncbi.nlm.nih.gov/pubmed/33353539
http://dx.doi.org/10.1186/s12916-020-01867-5
Descripción
Sumario:BACKGROUND: Major depressive disorder (MDD) shows large heterogeneity of symptoms between patients, but within patients, particular symptom clusters may show similar trajectories. While symptom clusters and networks have mostly been studied using cross-sectional designs, temporal dynamics of symptoms within patients may yield information that facilitates personalized medicine. Here, we aim to cluster depressive symptom dynamics through dynamic time warping (DTW) analysis. METHODS: The 17-item Hamilton Rating Scale for Depression (HRSD-17) was administered every 2 weeks for a median of 11 weeks in 255 depressed inpatients. The DTW analysis modeled the temporal dynamics of each pair of individual HRSD-17 items within each patient (i.e., 69,360 calculated “DTW distances”). Subsequently, hierarchical clustering and network models were estimated based on similarities in symptom dynamics both within each patient and at the group level. RESULTS: The sample had a mean age of 51 (SD 15.4), and 64.7% were female. Clusters and networks based on symptom dynamics markedly differed across patients. At the group level, five dynamic symptom clusters emerged, which differed from a previously published cross-sectional network. Patients who showed treatment response or remission had the shortest average DTW distance, indicating denser networks with more synchronous symptom trajectories. CONCLUSIONS: Symptom dynamics over time can be clustered and visualized using DTW. DTW represents a promising new approach for studying symptom dynamics with the potential to facilitate personalized psychiatric care. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-020-01867-5.