Cargando…
Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise
Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat‐rich a...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757076/ https://www.ncbi.nlm.nih.gov/pubmed/32937018 http://dx.doi.org/10.1111/1755-0998.13252 |
_version_ | 1783626672381100032 |
---|---|
author | Peona, Valentina Blom, Mozes P. K. Xu, Luohao Burri, Reto Sullivan, Shawn Bunikis, Ignas Liachko, Ivan Haryoko, Tri Jønsson, Knud A. Zhou, Qi Irestedt, Martin Suh, Alexander |
author_facet | Peona, Valentina Blom, Mozes P. K. Xu, Luohao Burri, Reto Sullivan, Shawn Bunikis, Ignas Liachko, Ivan Haryoko, Tri Jønsson, Knud A. Zhou, Qi Irestedt, Martin Suh, Alexander |
author_sort | Peona, Valentina |
collection | PubMed |
description | Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat‐rich and GC‐rich regions (genomic “dark matter”) limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long‐read, linked‐read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC‐rich microchromosomes and the repeat‐rich W chromosome. Telomere‐to‐telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes. |
format | Online Article Text |
id | pubmed-7757076 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77570762020-12-28 Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise Peona, Valentina Blom, Mozes P. K. Xu, Luohao Burri, Reto Sullivan, Shawn Bunikis, Ignas Liachko, Ivan Haryoko, Tri Jønsson, Knud A. Zhou, Qi Irestedt, Martin Suh, Alexander Mol Ecol Resour RESOURCE ARTICLES Genome assemblies are currently being produced at an impressive rate by consortia and individual laboratories. The low costs and increasing efficiency of sequencing technologies now enable assembling genomes at unprecedented quality and contiguity. However, the difficulty in assembling repeat‐rich and GC‐rich regions (genomic “dark matter”) limits insights into the evolution of genome structure and regulatory networks. Here, we compare the efficiency of currently available sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations thereof in assembling genomic dark matter. By adopting different de novo assembly strategies, we compare individual draft assemblies to a curated multiplatform reference assembly and identify the genomic features that cause gaps within each assembly. We show that a multiplatform assembly implementing long‐read, linked‐read and proximity sequencing technologies performs best at recovering transposable elements, multicopy MHC genes, GC‐rich microchromosomes and the repeat‐rich W chromosome. Telomere‐to‐telomere assemblies are not a reality yet for most organisms, but by leveraging technology choice it is now possible to minimize genome assembly gaps for downstream analysis. We provide a roadmap to tailor sequencing projects for optimized completeness of both the coding and noncoding parts of nonmodel genomes. John Wiley and Sons Inc. 2020-10-10 2021-01 /pmc/articles/PMC7757076/ /pubmed/32937018 http://dx.doi.org/10.1111/1755-0998.13252 Text en © 2020 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | RESOURCE ARTICLES Peona, Valentina Blom, Mozes P. K. Xu, Luohao Burri, Reto Sullivan, Shawn Bunikis, Ignas Liachko, Ivan Haryoko, Tri Jønsson, Knud A. Zhou, Qi Irestedt, Martin Suh, Alexander Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title | Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title_full | Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title_fullStr | Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title_full_unstemmed | Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title_short | Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
title_sort | identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird‐of‐paradise |
topic | RESOURCE ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757076/ https://www.ncbi.nlm.nih.gov/pubmed/32937018 http://dx.doi.org/10.1111/1755-0998.13252 |
work_keys_str_mv | AT peonavalentina identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT blommozespk identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT xuluohao identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT burrireto identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT sullivanshawn identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT bunikisignas identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT liachkoivan identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT haryokotri identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT jønssonknuda identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT zhouqi identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT irestedtmartin identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise AT suhalexander identifyingthecausesandconsequencesofassemblygapsusingamultiplatformgenomeassemblyofabirdofparadise |