Cargando…
Parallel Generative Topographic Mapping: An Efficient Approach for Big Data Handling
Generative Topographic Mapping (GTM) can be efficiently used to visualize, analyze and model large chemical data. The GTM manifold needs to span the chemical space deemed relevant for a given problem. Therefore, the Frame set (FS) of compounds used for the manifold construction must well cover a giv...
Autores principales: | Lin, Arkadii, Baskin, Igor I., Marcou, Gilles, Horvath, Dragos, Beck, Bernd, Varnek, Alexandre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757192/ https://www.ncbi.nlm.nih.gov/pubmed/32347666 http://dx.doi.org/10.1002/minf.202000009 |
Ejemplares similares
-
Generative Topographic Mapping of the Docking Conformational Space
por: Horvath, Dragos, et al.
Publicado: (2019) -
A unified approach to the applicability domain problem of QSAR models
por: Horvath, Dragos, et al.
Publicado: (2010) -
Discovery of novel chemical reactions by deep generative recurrent neural network
por: Bort, William, et al.
Publicado: (2021) -
S4MPLE—Sampler for Multiple Protein-Ligand Entities: Methodology and Rigid-Site Docking Benchmarking
por: Hoffer, Laurent, et al.
Publicado: (2015) -
GENERA: A Combined
Genetic/Deep-Learning Algorithm
for Multiobjective Target-Oriented De Novo Design
por: Lamanna, Giuseppe, et al.
Publicado: (2023)