Cargando…

Routes of the Upper Branch of the Atlantic Meridional Overturning Circulation according to an Ocean State Estimate

The origins of the upper branch of the Atlantic meridional overturning circulation (AMOC) are traced with backward‐in‐time Lagrangian trajectories, quantifying the partition of volume transport between different routes of entry from the Indo‐Pacific into the Atlantic. Particles are advected by the v...

Descripción completa

Detalles Bibliográficos
Autores principales: Rousselet, Louise, Cessi, Paola, Forget, Gael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757194/
https://www.ncbi.nlm.nih.gov/pubmed/33380755
http://dx.doi.org/10.1029/2020GL089137
Descripción
Sumario:The origins of the upper branch of the Atlantic meridional overturning circulation (AMOC) are traced with backward‐in‐time Lagrangian trajectories, quantifying the partition of volume transport between different routes of entry from the Indo‐Pacific into the Atlantic. Particles are advected by the velocity field from a recent release of “Estimating the Circulation and Climate of the Ocean” (ECCOv4). This global time‐variable velocity field is a dynamically consistent interpolation of over 1 billion oceanographic observations collected between 1992 and 2015. Of the 13.6 Sverdrups (1 Sv = 10(6) m(3)/s) flowing northward across 6°S, 15% enters the Atlantic from Drake Passage, 35% enters from the straits between Asia and Australia (Indonesian Throughflow), and 49% comes from the region south of Australia (Tasman Leakage). Because of blending in the Agulhas region, water mass properties in the South Atlantic are not a good indicator of origin.