Cargando…
Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles
Black carbon (BC) aerosols from incomplete combustion generally warm the climate, but the magnitudes of their various interactions with climate are still uncertain. A key knowledge gap is their role as ice nucleating particles (INPs), enabling ice formation in clouds. Here we assess the global radia...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757207/ https://www.ncbi.nlm.nih.gov/pubmed/33380757 http://dx.doi.org/10.1029/2020GL089056 |
_version_ | 1783626701299777536 |
---|---|
author | McGraw, Zachary Storelvmo, Trude Samset, Bjørn Hallvard Stjern, Camilla Weum |
author_facet | McGraw, Zachary Storelvmo, Trude Samset, Bjørn Hallvard Stjern, Camilla Weum |
author_sort | McGraw, Zachary |
collection | PubMed |
description | Black carbon (BC) aerosols from incomplete combustion generally warm the climate, but the magnitudes of their various interactions with climate are still uncertain. A key knowledge gap is their role as ice nucleating particles (INPs), enabling ice formation in clouds. Here we assess the global radiative impacts of BC acting as INPs, using simulations with the Community Earth System Model 2 climate model updated to include new laboratory‐based ice nucleation parameterizations. Overall, we find a moderate cooling through changes to stratiform cirrus clouds, counteracting the well‐known net warming from BC's direct scattering and absorption of radiation. Our best estimates indicate that BC INPs generally thin cirrus by indirectly inhibiting the freezing of solution aerosol, with a global net radiative impact of −0.13 ± 0.07 W/m(2). Sensitivity tests of BC amounts and ice nucleating efficiencies, and uncertainties in the environment where ice crystals form, show a potential range of impacts from −0.30 to +0.02 W/m(2). |
format | Online Article Text |
id | pubmed-7757207 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77572072020-12-28 Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles McGraw, Zachary Storelvmo, Trude Samset, Bjørn Hallvard Stjern, Camilla Weum Geophys Res Lett Research Letters Black carbon (BC) aerosols from incomplete combustion generally warm the climate, but the magnitudes of their various interactions with climate are still uncertain. A key knowledge gap is their role as ice nucleating particles (INPs), enabling ice formation in clouds. Here we assess the global radiative impacts of BC acting as INPs, using simulations with the Community Earth System Model 2 climate model updated to include new laboratory‐based ice nucleation parameterizations. Overall, we find a moderate cooling through changes to stratiform cirrus clouds, counteracting the well‐known net warming from BC's direct scattering and absorption of radiation. Our best estimates indicate that BC INPs generally thin cirrus by indirectly inhibiting the freezing of solution aerosol, with a global net radiative impact of −0.13 ± 0.07 W/m(2). Sensitivity tests of BC amounts and ice nucleating efficiencies, and uncertainties in the environment where ice crystals form, show a potential range of impacts from −0.30 to +0.02 W/m(2). John Wiley and Sons Inc. 2020-10-12 2020-10-28 /pmc/articles/PMC7757207/ /pubmed/33380757 http://dx.doi.org/10.1029/2020GL089056 Text en ©2020. The Authors. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Letters McGraw, Zachary Storelvmo, Trude Samset, Bjørn Hallvard Stjern, Camilla Weum Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title | Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title_full | Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title_fullStr | Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title_full_unstemmed | Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title_short | Global Radiative Impacts of Black Carbon Acting as Ice Nucleating Particles |
title_sort | global radiative impacts of black carbon acting as ice nucleating particles |
topic | Research Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757207/ https://www.ncbi.nlm.nih.gov/pubmed/33380757 http://dx.doi.org/10.1029/2020GL089056 |
work_keys_str_mv | AT mcgrawzachary globalradiativeimpactsofblackcarbonactingasicenucleatingparticles AT storelvmotrude globalradiativeimpactsofblackcarbonactingasicenucleatingparticles AT samsetbjørnhallvard globalradiativeimpactsofblackcarbonactingasicenucleatingparticles AT stjerncamillaweum globalradiativeimpactsofblackcarbonactingasicenucleatingparticles |