Cargando…
Using Deep Learning to Extrapolate Protein Expression Measurements
Mass spectrometry (MS)‐based quantitative proteomics experiments typically assay a subset of up to 60% of the ≈20 000 human protein coding genes. Computational methods for imputing the missing values using RNA expression data usually allow only for imputations of proteins measured in at least some o...
Autores principales: | Barzine, Mitra Parissa, Freivalds, Karlis, Wright, James C., Opmanis, Mārtiņš, Rituma, Darta, Ghavidel, Fatemeh Zamanzad, Jarnuczak, Andrew F., Celms, Edgars, Čerāns, Kārlis, Jonassen, Inge, Lace, Lelde, Antonio Vizcaíno, Juan, Choudhary, Jyoti Sharma, Brazma, Alvis, Viksna, Juris |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757209/ https://www.ncbi.nlm.nih.gov/pubmed/32937025 http://dx.doi.org/10.1002/pmic.202000009 |
Ejemplares similares
-
Topological structure analysis of chromatin interaction networks
por: Viksna, Juris, et al.
Publicado: (2019) -
Dynamics of gene regulatory networks and their dependence on network topology and quantitative parameters – the case of phage λ
por: Ruklisa, Dace, et al.
Publicado: (2019) -
PASSIM – an open source software system for managing information in biomedical studies
por: Viksna, Juris, et al.
Publicado: (2007) -
An integrated landscape of protein expression in human cancer
por: Jarnuczak, Andrew F., et al.
Publicado: (2021) -
Improving GENCODE reference gene annotation using a high-stringency proteogenomics workflow
por: Wright, James C., et al.
Publicado: (2016)