Cargando…

Accurate Silent Synapse Estimation from Simulator-Corrected Electrophysiological Data Using the SilentMLE Python Package

The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for ru...

Descripción completa

Detalles Bibliográficos
Autores principales: Lynn, Michael, Naud, Richard, Béïque, Jean-Claude
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757407/
https://www.ncbi.nlm.nih.gov/pubmed/33377070
http://dx.doi.org/10.1016/j.xpro.2020.100176
Descripción
Sumario:The proportion of silent (AMPAR-lacking) synapses is thought to be related to the plasticity potential of neural networks. We created a maximum-likelihood estimator of silent synapse fraction based on simulations of the underlying experimental methodology. Here, we provide a set of guidelines for running a Python package on compatible experimental synaptic data. Compared with traditional failure-rate approaches, this synthetic likelihood estimator improves the validity and accuracy of the estimates of the silent synapse fraction. For complete details on the use and execution of this protocol, please refer to Lynn et al. (2020).